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Notation and conventions

We work over C, unless stated otherwise. Varieties are not assumed to be
irreducible.

G(k, n) will denote the Grassmannian of k-dimensional vector subspaces of
Cn, and G(k − 1, n − 1) will denote the Grassmannian of k − 1-dimensional
projective linear subspaces of Pn−1. In other words G(k, n) ∼= G(k − 1, n− 1)

We will occasionally use the word scheme, but don’t be afraid; if you can
accept that the intersection of a conic and a tangent line is a point with multi-
plicity 2, that suffices.

1 Chow rings and Grassmannians

1.1 Introduction

Consider 4 randomly chosen lines L1, L2, L3, L4 in P3. How many
lines pass through all 4 of them?

The approach we will follow to tackle this and similar questions is as follows:
The set of all lines in P3 is the Grassmannian G(1, 3). For each of our lines Li,
let Vi ⊂ G(1, 3) be the set of all lines passing through Li; this is a subvariety
of the Grassmannian. Our problem can then be restated as: “how many points
are in the intersection

⋂4
i=1 Vi?” Our next aim is to define the gadget that will

help us solve this question.

1.2 The Chow group

In the upcoming 4 subsections we give a short introduction to Chow rings; see
the first chapter of [EH16] for more. Given a (smooth, irreducible) variety X
we define the group of algebraic cycles Z(X) to be the free abelian group gen-
erated by all irreducible subvarieties of X. Given a (not necessarily irreducible)
subvariety Y of X, we can associate to it an element 〈Y 〉 of Z(X) by taking the
sum of its irreducible components.
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The Chow group A(X) of X is the quotient of Z(X) by rational equivalence.
Roughly speaking, two elements of Z(X) are rationally equivalent if one can be
algebraically deformed in one another. Here is a more precise definition.

Definition 1.2.1. For every irreducible subvariety Z of P1 × X that is not
contained in one of the fibers {t} × X, we write Z0 := Z ∩ ({0} × X) ⊆ X,
and Z∞ := Z ∩ ({∞} × X) ⊆ X (where the intersections are taken scheme-
theoretically). We think of Z as a one-parameter family interpolating between
Z0 and Z∞, and say Z0 and Z∞ are rationally equivalent.

Let Rat(X) ⊆ Z(X) be the subgroup generated by differences 〈Z0〉 − 〈Z∞〉,
where Z runs over the irreducible subvarieties of P1 ×X that is not contained
in one of the fibers {t}×X. The Chow group of X is defined to be the quotient
Z(X)/Rat(X).

For Y ⊆ X a subvariety, we will denote the corresponding class in the Chow
group A(X) by [Y ].

Remark 1.2.2. The group Z(X) is naturally graded by codimension: Z(X) =⊕dimX
k=0 Zk(X), where Zk(X) is the subgroup generated by subvarieties of codi-

mension k. One can show ([EH16, Proposition 1.4]) that this grading is com-
patible with rational equivalence, so that the Chow group inherits this grading:
A(X) =

⊕dimX
k=0 Ak(X). We also write Ak(X) = AdimX−k(X).

Example 1.2.3. Let X = Pn and fix a codimension k. All codimension k
linear subspaces of Pn are rationally equivalent1, hence we can define a class
ζk ∈ Ak(Pn): the class of an (n − k)-plane. In fact, it turns out that for a
subvariety Y of degree d and codimension k, 〈Y 〉 is linearly equivalent to d〈L〉,
where L is an (n− k)-plane. So Ak(Pn) ∼= Z, generated by the element ζk.

1.3 The Chow ring

The Chow group can be made into a ring via the intersection product.

Definition 1.3.1. Two subvarieties A, B of a smooth variety X intersect trans-
versely at a point p if TpA + TpB = TpX. We say that A and B intersect
generically transverse if they intersect transversely at a general point of each
component of A ∩B.

Theorem 1.3.2 (Chow-Fulton). If X is a smooth quasi-projective variety, then
there is a unique product structure on A(X)satisfying the condition:

If two subvarieties A, B of X are generically transverse, then [A] ·
[B] = [A ∩B].

This structure makes

A(X) =

dimX⊕
k=0

Ak(X)

1this can be proved using that for 2 linear subspaces, there is a linear transformation
transforming one in the other
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into an associative, commutative ring, graded by codimension, called the Chow
ring of X.

Elements of the degree 1 part A1(X) are divisors2 up to rational equivalence;
A1(X) is the divisor class group (which is also the Picard group).

Example 1.3.3. Let X = Pn, and let A and B be general planes of codimen-
sions a and b. Then A and B intersect transversely: if a+b > n the intersection
is empty, else it is a plane of codimension a+ b. In other words, the intersection
product on A(Pn) is described by

ζa · ζb =

{
ζa+b if a+ b ≤ n
0 if a+ b > n.

From this it follows that A(Pn) ∼= Z[ζ]/(ζn+1) as rings, where ζ := ζ1 and
ζi = ζi.

1.4 Pushforward and pullback

Definition 1.4.1. For f : X → Y a proper morphism of varieties, there is
a pushforward map f∗ : A(X) → A(Y ), defined as follows: For Z ⊆ X an
(irreducible) subvariety of dimension i, we put

f∗([Z]) =

{
0 if f |Z is not generically finite (i.e. if dim(f(Z)) < dim(Z))

d[f(Z)] if f |Z is generically finite of degree d

By linearly extending, we get a group morphism f∗ : Adim(X)−i(X)→ Adim(Y )−i(Y ).

A proof that this is well-defined (i.e. is compatible with linear equivalence)
can be found in [Ful98, Section 1.4]. f∗ is only a morphism of groups, not of
rings; it neither preserves the grading nor the product.

For every projective variety X, the unique map π : X → pt is a proper
morphism. The corresponding pushforward map deg := π∗ : Adim(X)(X) →
A0(pt) ∼= Z is known as the degree map; it simply sends the class of each
point in X to 1 ∈ Z. The degree map will play a fundamental role in solving
enumerative problems: if Z ⊆ X is a 0-dimensional subvariety (i.e. a collection
of points in X), counting the number of points amounts to computing the degree
deg([Z]). In the literature, the degree map is often written as

∫
X

.

Definition 1.4.2. If f : X → Y is a morphism of varieties, it induces a pullback
map f∗ : A(Y )→ A(X), defined in [EH16, Theorem 1.23(a)]. f∗ is a morphism
of graded rings. In principle, one defines f∗(Z) = [f−1(Z)]. Formally, this holds
as long as the map f is flat, or Z is Cohen-Macaulay and f−1(Z) has correct
codimension. Note that the equality cannot hold without any assumptions:
consider a blowup of P2.

2since X is smooth, we do not have to distinguish among Weil and Cartier divisors
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Example 1.4.3. Consider P2 and two curves Z1, Z2 of degree d1, d2. We know
[Zi] = diξ in the ring A(P2) = Z[ξ]/(ξ3). The computation (d1ξ)(d2ξ) = d1d2ξ

2

tells us that if Z1 and Z2 intersect transversally, then they intersect in d1d2

many points (Bézout’s theorem).

1.5 Affine stratifications

Definition 1.5.1. A stratification of a variety X is a finite collection of irre-
ducible, locally closed subvarieties Ui such that

1. X =
⊔
Ui.

2. The closure Ui of every Ui is a union of Uj ’s.

We call the Ui open strata, and their closures Yi = Ui closed strata. If each Ui
is isomorphic to an affine space Ak, we say that the stratification is an affine
stratification.

Theorem 1.5.2. Let X be a quasiprojective variety with an affine stratification.
Then:

• The Chow group A(X) is generated (as a free abelian group) by the classes
of the closed strata.

• In fact, the classes of the closed strata form a Z-basis of A(X).

Proof. A proof of the first part can be found in [EH16, Proposition 1.17]. The
second part is much harder, and was only proven in 2014 by Totaro [Tot14].
However, for all varieties we will meet, it is possible to prove the second part
directly.

Example 1.5.3. Let X = Pn, and for i ∈ {0, . . . , n}, let Ui := {[0 : . . . : 0 :
1 : xi+1 : . . . : xn]} ⊂ Pn. Then the Ui form an affine stratification of Pn, with
closed strata Yi = {[0 : . . . : 0 : xi : xi+1 : . . . : xn]} ∼= Pn−i ⊆ Pn. Then
Theorem 1.5.2 implies that Ak(Pn) is generated by ζi = [Yi], without needing
to explicitly show that every subvariety of Pn is rationally equivalent to a sum
of linear subspaces.

1.6 Partitions and Young diagrams

A partition λ is a nonincreasing sequence [λ1, . . . , λn] of nonnegative integers.
The length len(λ) of the partition is the length of the sequence, the weight
|λ| =

∑n
i=1 λi. To every partition λ, we associate a Young diagram, with λi

boxes in the i-th row. So len(λ) is the number of rows, and |λ| is the number
of boxes.

Example 1.6.1. Consider λ = [3, 3, 1]. The associated Young diagram is:

.
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There is a bijection between partitions and sets of nonnegative integers: to
a partition λ of length n, we associate a set

I(λ) := {λn, λn−1 + 1, . . . , λ2 + n− 2, λ1 + n− 1} ⊂ Nn.

Then given a set I = {i1, . . . , in} ⊂ Nn, where we assume i1 < . . . < in, the
corresponding partition is

λ(I) := [in − (n− 1), in−1 − (n− 2), . . . , i2 − 1, i1].

1.7 Affine stratification of the Grassmannian

Let Λ ∈ G(k, n) be a k-plane in Cn. Then Λ is the row span of a full rank
k × n matrix A. Two such matrices give the same Λ precisely when one can be
transformed in the other using elementary row operations. Hence out of all the
matrices representing Λ, there is a unique one which is in reduced row echelon
form. We will denote this matrix by AΛ.

Definition 1.7.1. Let λ be a length k partition with λ1 ≤ n−k (i.e. the Young
diagram fits inside a k × (n− k) box). We define the open Schubert cell

Σ◦λ := {Λ ∈ G(k, n) | the pivots of AΛ are in positions I(λ)}.

For instance, for G(2,4) we have:

Σ◦∅ =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
,Σ◦ =

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

Σ◦ =

(
1 ∗ ∗ 0
0 0 0 1

)
,Σ◦ =

(
0 1 0 ∗
0 0 1 ∗

)
,

Σ◦ =

(
0 1 ∗ 0
0 0 0 1

)
,Σ◦ =

(
0 0 1 0
0 0 0 1

)
.

The closed Schubert cells can be described by replacing in the above every
1 by a ∗.

Proposition 1.7.2. The Schubert cells ΣΛ form an affine stratification of
G(k, n).

Sketch of proof. By construction, G(k, n) =
⊔
λ Σ◦λ, and Σ◦λ

∼= Ak(n−k)−|λ|, and
Σλ =

⊔
µ≥λ Σ◦µ. Here µ ≤ λ means that µi ≤ λi for each i.

Corollary 1.7.3. The Chow ring A(G(k, n)) has a Z-basis given by the Schu-
bert classes σλ := [Σλ].

Here is a more geometric description of the Schubert cells: consider the
Grassmannian G(k, V ), where dimV = n, and fix a complete flag V = (V1 ⊂
. . . ⊂ Vn−1 ⊂ Vn = V ). We define the Schubert cell

Σλ(V) := {Λ ∈ G(k, V ) | dim(Vn−k+i−λi ∩ Λ) ≥ i ∀i}.
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If we take V = Cn and Vi = span(en−i+1, . . . , en), this agrees with our previous
definition.

In particular, if λ = [a, 0, . . . , 0], the class σλ =: σa is given by the locus of all
k-planes intersecting a given (n−k+1−a)-plane nontrivially. The degree of σλ in
A(X) (i.e. the codimension of the variety above) is given by |λ| := λ1 + . . .+λk.

1.8 Interlude: symmetric polynomials and Schur polyno-
mials

We consider the ring Λk = Z[x1, . . . , xk]Sk of symmetric polynomials in k vari-
ables. One of the most important classes of symmetric functions are the Schur
polynomials. They play a central role in the representation theory of the general
linear group, and as we will see later, also in Schubert calculus.

There are several ways of defining Schur polynomials, but non of them is
very easy. The definition below, via Jacobi’s bialternant formula, is perhaps the
most direct one:

Definition 1.8.1. For a partition λ (or Young diagram) of length k, the Schur
polynomial sλ is equal to the following quotient of determinants:

sλ(x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣
xλ1+k−1

1 xλ1+k−1
2 . . . xλ1+k−1

k

xλ2+k−2
1 xλ2+k−2

2 . . . xλ2+k−2
k

...
...

. . .
...

xλk1 xλk2 . . . xλkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xk−1

1 xk−1
2 . . . xk−1

k

xk−2
1 xk−2

2 . . . xk−2
k

...
...

. . .
...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣

.

Note that the determinant in the denominator is the Vandermonde determi-
nant

∏
i<j (xi − xj), and that the degree of sλ is equal to the weight |λ| of the

partition λ. Two important special cases are

s
a

= ha :=
∑

i1≤...≤ia

xi1 · · ·xia ,

the a’th complete homogeneous symmetric polynomial, and

s
a
= ea :=

∑
i1<...<ia

xi1 · · ·xia ,

the a’th elementary symmetric polynomial.

The Schur polynomials sλ form a Z-basis of Λk. In particular, every prod-
uct of Schur polynomials can be written as a Z-linear combination of Schur
polynomials:

sλsµ =
∑
ν

cνλµsµ,
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where the sum runs over all partitions ν of length at most k and weight |ν| =
|λ|+ |µ|. The coefficients cνλµ = cνµλ ∈ Z are known as the Littlewood-Richardson

coefficients3. A combinatorial formula for computing them can be found e.g. in
[FH91, (A.8)], or on Wikipedia.

There are 2 cases in which the Littlewood-Richardson coefficients are easy
to describe:

Theorem 1.8.2 (Pieri’s rule). For any partition λ and integer n we have:

sλ(x1, . . . , xk) · s[n](x1, . . . , xk) =
∑
µ

sµ(x1, . . . , xk),

where the sum is over all Young diagrams µ obtained from λ by adding n boxes,
at most 1 in each column.

Similarly, for [1, . . . , 1] a partition of n we have:

sλ(x1, . . . , xk) · s[1,...,1](x1, . . . , xk) =
∑
µ

sµ(x1, . . . , xk),

where the sum is over all Young diagrams µ obtained from λ by adding n boxes,
at most 1 in each row.

To simplify notation one may write λ instead of sλ.

Example 1.8.3. · = + + +

1.9 Exercises

Exercise 1.9.1. 1. Let v1, . . . vr be r linearly independent vectors in Cn.
Consider the following subvariety of G(k,Cn):

{Λ | v1, . . . , vr are linearly dependent in Cn/Λ}.

What is the class of this subvariety in the Chow ring A(G(k, n))?
Hint: it is a Schubert class σλ, where λ is some Young diagram.

2. Let β1, . . . βr be r linearly independent vectors in (Cn)∗. Consider the
following subvariety of G(k,Cn):

{Λ | β1, . . . , βr become linearly dependent when restricted to Λ}.

What is the class of this subvariety in the Chow ring A(G(k, n))?

3. Congratulations! You just computed the Chern classes of the universal
quotient bundle and the dual universal subbundle of the Grassmannian.
We’ll explain what all these words mean in the next lectures.

3In fact, it turns out cνλµ is always nonnegative.
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Exercise 1.9.2. Using Pieri’s rule, show that, after setting to zero all (Schur
polynomials corresponding to) diagrams with either more than three rows or
columns one has:

(1 + t + t2 + t3 )(1− t + t2 − t3 ) = 1

Exercise 1.9.3. • Let λ be a Young diagram that fits in an r×(n−r) box,
and let λc = [n − r − λr, . . . , n − r − λ1] be its complement. Show that
σλσλc = 1 ∈ A(G(r, V )), by fixing two general flags V = (V1 ⊂ . . . ⊂ Vn =
V ) and W = (W1 ⊂ . . . ⊂ Wn = V ) in V and showing that Σλ(V) and
Σλc(W) intersect in a single point. If you like working in coordinates, you
can take V = Cn, Vi = span(en−i+1, . . . , en), and Wi = span(e1, . . . , ei).
Then the cells Σµ(V) are the ones from Definition 1.7.1, and the cells
Σµ(W) look similar but with the order of the coordinates reversed. Do
try this out on some examples first!

• Let λ and µ be two Young diagrams inside an r × (n − r) box such that
|λ|+ |µ| = r(n− r). If µ 6= λc, show that σλσµ = 0 ∈ A(G(r, V )). Again,
do try this out on some examples first!

2 K-theory, vector bundles and Grassmannians

2.1 Ring structure on the Chow ring of the Grassmannian

Theorem 2.1.1. The product of two Schubert classes in A(G(k, n)) is given by

σλσµ =
∑
ν

cνλµσν ,

where cνλµ are the Littlewood-Richardson coefficients.

We can restate the above as

Theorem 2.1.2. The Chow ring of the Grassmannian is isomorphic to the ring
of symmetric polynomials in k variables, modulo the ideal generated by all Schur
polynomials sλ for which λ1 > n−k. The isomorphism sends the Schubert class
σλ to the Schur polynomial sλ.

One way of proving the above theorems is by showing that the Pieri rule
holds in A(G(k, n)), see for instance [EH16, Proposition 4.9], or Proposition 3.8
in these lecture notes. The theorem then follows from the fact that the ring Λk
of symmetric polynomials is generated by the complete homogeneous symmetric
polynomials.

Remark 2.1.3. The Grassmannian Gr(k, V ) is naturally isomorphic to Gr(n−
k, V ∗), by sending a subspace Λ ⊂ V to (V/Λ)∗ ⊂ V ∗. This isomorphism induces
an isomorphism of Chow rings: the Schubert class σλ ∈ A(Gr(k, V )) gets sent
to the Schubert class σλT ∈ A(Gr(k, V )), where λT is the conjugate partition.
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In summary: here is a general strategy for solving intersection problems on
the Grassmannian:

Problem: given a number of conditions C1, . . . , Cm on k-planes in Cn,
determine how many k-planes simultaneously satisfy all of the conditions.

Strategy:

1. For each condition Ci, let Yi ⊂ G(k, n) be the variety of all k-planes
satisfying the condition, and determine the class [Yi] ∈ A(G(k, n)) as a
linear combination of the Schubert classes.

2. Verify that the Yi intersect generically transversely.

3. Compute the product [Y1] · · · [Ym] ∈ A(G(k, n)).

Step 3 is now completely solved, as Theorem 2.1.1, together with the Littlewood-
Richardson rule, tells us how to compute products in the Chow ring. Step 2
(verifying transversality) can be hard in general, but in many concrete examples
our conditions are generic (e.g. “passing through a general point” or “being
tangent to a general quadric”) and then transversality will follow from this
genericity. One can make this precise using Kleiman’s transversality theorem
(see [EH16, Theorem 1.7]).

Theorem 2.1.4. Suppose a group G acts on a variety X transversally (like
GL(V ) on a Grassmannian G(k, V )). For any two subvarieties Y1, Y2 ⊂ X and
general g ∈ G the varieties gY1 and Y2 are generically transverse.

The main challenge remaining is step 1: given a condition on k-planes in
Cn, how to determine the corresponding class?

In some sense you were solving such a problem in Exercise 1.9.1 from the
last lecture. Below we present one more example.

Example 2.1.5. What is the locus of points in G(2, 4) that correspond to lines
intersecting a given line l?

Note that here, as GL(4) acts transitively on G(2, 4) it does not matter which
l we fix. Of course the explicit subvarieties of G(2, 4) may differ (depending on
l), but they always define the same class in A(G(2, 4)). Considering a complete
flag that goes through l this variety, by definition, is the Schubert variety Σ .

So, how many lines intersect four general lines? We need to intersect four
times Σ , obtaining:

4 = 2 .

In other words, by Theorem 2.1.4, the intersection consists of two points, i.e. there
are two such lines.

For more examples we refer to https://fulges.github.io/docs/Teaching/
2021_MPI_EnumerativeGeometry/IntroEnumerativeGeometry.pdf, Chapter 2.

Next, we provide more tools for solving step 1 above: often, the classes we
are interested in can be interpreted as Chern classes of a vector bundle.
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2.2 Vector bundles

Intuitively, a vector bundle is a family of vector spaces Vx parameterized by
points x ∈ X of an algebraic variety.

Definition 2.2.1 (Vector bundle). A vector bundle is a morphism of algebraic
varieties f : V → X such that:

1. There is an open covering Ui of X such that mi : f−1(Ui) ' Cr × Ui
and the map f restricted to f−1(Ui) is the composition of mi with the
projection to Ui.

2. For x ∈ Ui1 ∩ Ui2 the induced map: Cr ' Cr × {x} ' f−1(x) ' Cr ×
{x} ' Cr is an isomorphism of vector spaces. (Here the second and third
isomorphisms come respectively from mi1 and mi2 .)

The maps Ui1 ∩ Ui2 → GL(r) from point 2 are known as transition functions.
Note that one can reconstruct the bundle V from the transition functions, by
glueing procedures.

The fiber f−1(x) is often denoted by Vx. It comes with a natural structure
of a vector space (but not with a basis!).

A section of a vector bundle is such a morphism s : X → V that f ◦s = idX .
Every vector bundle has a (zero) section.

A morphism of vector bundles V1, V2 is such a morphism (of varieties) that
the following diagram commutes:

V1 V2

X

and over each point of X we obtain a linear map of vector spaces.
(For people familiar with sheaves: think about locally free sheaf of modules,

where the elements of the module are sections of f)

To every vector bundle V we associate the dual vector bundle V ∗, where
each vector space Vx over x ∈ X is replaced by V ∗x . Formally, we change the
transition functions by their inverse transpose and construct V ∗ by glueing.

Example 2.2.2. For any variety X we have the trivial rank r vector bundle
Cr ×X. The dual of the trivial bundle is the (same) trivial bundle.

On the projective space P(V ) we have the trivial vector bundle V ×P(V ). It
contains the tautological line (i.e. rank one) bundle O(−1) given by considering
over a point [x] ∈ P(V ) the line in V that it represents.

On the open set Ui ⊂ P(V ) given by xi 6= 0 we have the trivialization of
O(−1) that assigns to a point (a0, . . . , an) ∈ V on a line through [a0 : · · · : an] ∈
P(V ) the number ai ∈ C.

This line bundle has no sections, apart from the zero one. The dual of O(−1)
is O(1). The latter has sections: every homogeneous linear polynomial gives a
map from fibers of O(−1) to C.
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On the Grassmannian G(k, V ) we also have the trivial bundle V ×G(k, V )
that for simplicity we will denote by V . It contains the tautological bundle U ,
where over [W ] ∈ G(k, V ) we take W ⊂ V . We also have the bundle Q, where
over [W ] ∈ G(k, V ) we consider V/W . Formally, it is easier to construct first
the dual by considering (V/W )∗ as a subspace of V ∗ and then dualizing.

2.3 K-theory

A sequence of morphisms of vector bundles

0→ V1 → V2 → V3 → 0

is called exact, if it is an exact sequence of vector spaces over each point x ∈ X.

Definition 2.3.1. Let X be a smooth variety. The K-theory (or Grothendieck
group) K0(X) is defined as the free abelian group on isomorphisms classes of
vector bundles on X modulo the subgroup generated by [V1] + [V3] − [V2] for
every exact sequence:

0→ V1 → V2 → V3 → 0.

Another operation on vector bundles is their tensor product V1 ⊗ V2, which
over each x ∈ X is the tensor product of the two vector spaces coming from
the two bundles. Note that formally, one needs to say what are the transition
functions. This product gives K0(X) a structure of a ring, where identity is the
(class of the) trivial rank one (line) bundle.

In a similar way, we may take exterior and symmetric powers of a vector
bundle.

Example 2.3.2. When X is a point, a vector bundle is just a vector space. We
have K0(X) = Z (with the usual ring structure).

Example 2.3.3. We have K0(Pn) = Z[x]/(xn+1). This will be a special case
of more general series of examples, but first let us try to understand the above
equality. The first question is: what is x?

We claim that x = [O(−1)] − 1. Why would we have xn+1 = 0? Consider
the case n = 2. We have the Euler sequence:

0→ Ω1 → O(−1)⊕3 → O → 0.

By looking at the second exterior power we obtain the exact sequence:

0→ Ω2 →
2∧
O(−1)⊕3 → Ω1 → 0.

But Ω2 corresponds on P2 to the canonical line bundle O(−3). Hence by the
second sequence:

[O(−3)] + [Ω1]− [

2∧
O(−1)⊕3] = 0.
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We also have an exact sequence:

0→ O(−1)⊕2 → O(−1)⊕3 → O(−1)→ 0.

Taking the second exterior power we obtain:

0→
2∧
O(−1)⊕2 →

2∧
O(−1)⊕3 → O(−2)⊕2 → 0.

Note that
∧2O(−1)⊕2 is a line bundle equal to O(−2). Computing [Ω1] from

the first exact sequence we obtain:

[O(−3)] + 3[O(−1)]− 1− 3[O(−2)] = 0,

which precisely tells us x3 = 0.
If you are confused about exterior powers for exact sequences look in: Hartshorne,

exercise 5.16.
If you are confused about Euler sequence look in Wikipedia.
If you are confused how we see the type of line bundle from an expression

like:
∧2O(−1)⊕2 - we will introduce general tools soon.

If you are not confused at all - it must have been very boring for you so far!

It is often more convenient to look at rational coefficients for the K-theory,
i.e. consider KQ(X) := K(X) ⊗Z Q. It is not a coincidence that the K-theory
ring for Pn was the same as the Chow ring (and the cohomology ring). Later
we will define the Chern map that will give an isomorphism K0

Q(X)→ AQ(X).

2.4 Exercises

Exercise 2.4.1.

Can you present A(G(2, 4)) as a polynomial ring modulo an ideal?

Exercise 2.4.2. Extend the formula xn+1 = 0 in Example 2.3.3 to arbitrary n.

Exercise 2.4.3. (*) How many lines are tangent to four general quadrics in
P3?

3 Chern classes, Chern roots and Chern char-
acter

3.1 Chern classes

We will now describe a way to associate (classes of) subvarieties to a vector
bundle. Let us start with line bundles.

The group of isomorphism classes of line bundles is denoted by Pic(X). If
you are familiar with the definition of the Picard group as equivalence classes
of Cartier divisors, note that the data of Cartier divisor is exactly the data

12



needed to construct a line bundle. Now given a line bundle L → X, there is
always a nonzero, rational section s : X 99K L (for example s(x) = (x, 1) on one
trivialization U ×C). Such a section s gives a rational function on any Ui ⊂ X
on which we fix a trivialization of L. Looking at the order of the poles and zeros
of s we obtain D(s) a linear combination of codimension one subvarieties of X:

D(s) =
∑
Y⊂Z

(ordY (s))Y.

Example 3.1.1. Consider P1 = P(V ) and the line bundle L = O(−1). On
the open set U1 := {(1 : x)} we have the trivialization of the line bundle,
U1×C→ U1×V given by ((1 : x), t) 7→ ((1 : x), (t, tx)). On this set we consider
the rational section U1 → L|U1

⊂ U1 × V given by (1 : x) 7→ ((1 : x), (1, x)).
Clearly, this section has neither poles nor zeros on U1.

There is the second open set U2 := {(x : 1)} over which L also trivializes to
U2 × C→ U2 × V given by ((x : 1), t) 7→ ((x : 1), (tx, t)). Consider the rational
map induced by our section

U2 99K U2 × C→ C,

where the last map is simply the projection. We have:

(x : 1) = (1 : 1/x) 7→ ((1 : 1/x), (1, 1/x)) ∈ U2 × V.

Hence, over (x : 1) our section, as an element of V takes value (1, 1/x). This
is the image of ((x : 1), (1/x)) ∈ U2 × C under the trivialization map. Thus s
defines a function U2 → C given by (x : 1)→ 1/x. This has a simple pole. Thus
D(s) = −pt where pt is the unique point of U2 \ U1.

The above example may suggest that it is very easy to look at zeros and
poles of a function, note however that our variety X may be glueing of spectra
of strange rings, not just polynomial rings. Fortunately we assume that X is
smooth, in which case the order of poles and zeros is well-defined by valuation
theory. (The correct algebra statement is that a one dimensional regular local
ring is a DVR.)

Theorem 3.1.2. The map L→ D(s) descends to a map

c1 : Pic(X)→ AdimX−1(X).

In other words, the choice of the section s changes the divisor D(s), but not its
equivalence class.

Surprisingly, in general, this map needs not be injective or surjective. For-
tunately, under the assumption that X is smooth it is an isomorphism. (More
precisely it is an isomorphism for locally factorial varieties, and the correct
algebraic statement is that regular local ring is UFD).

The map c1 is known as the first Chern class of a line bundle. We also say
that all higher Chern classes of any line bundle are zero, or even more generally
ci(E) = 0 for any vector bundle E of rank strictly smaller than i. Next we will
define Chern classes ci(E) for i = 0, . . . , rk E . There are a few ways to do this.
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(Intuitive way) Suppose you want to globally trivialize a line bundle L. This
means you need to say where is 1 in each line over each x ∈ X. Equivalently
you want to find a nonzero section. If you pick any section, the zeros tell you
”how much” you failed.

Now we would like to do the same for a vector bundle E of rank r. To
trivialize it we would like to choose r sections that are linearly independent over
each point x ∈ X. How much we failed is now encoded by the locus of points
where the sections fail to be linearly dependent. The r sections could be encoded
as the section of the line bundle

∧r E . By definition c1(E) := c1(
∧r E).

Let us now choose s1, . . . , sr−i+1 general, global sections of E . We assume
that the set D := {x ∈ X : s1(x), . . . , sr−i+1(x) fail to be linearly independent}
has codimension i. Then we can define ci(E) ∈ Ai(X) as the sum of all the
(classes of) varieties that are components of D. The assumption we make is
quite strong, but gives a very good intuition what Chern classes measure.

Note that if we want to work with global sections, the same problem arises
with line bundles. If we pick the zero section, it is not linearly independent with
itself (i.e. zero) in codimension 0 (instead of wanted 1), and hence we cannot
define c1 with that section.

(Projectivisation of line bundle) In what follows we will use the variety
P(E). This variety is obtained from E by first replacing each Ui × Cr with
Ui × P(Cr) and then using the transition function to glue the pieces together.
The advantage is that P(E) comes with a natural line bundles O(−1) and its
dual O(1) and the map π : P(E)→ X.

Definition 3.1.3. The i-th Segre class Segi(E) is defined as:

Segi(E) := π∗(c1(O(1))r+i−1) ∈ Ai(X).

Note that Segre classes may be nonzero beyond the rank of the vector bundle!

Theorem 3.1.4. There exist unique ci(E) ∈ AdimX−i(X) (known as Chern
classes) such that:

(1 + Seg1(E)t+ Seg2(E)t2 + . . . )(1 + c1(E)t+ c2(E)t2 + . . . ) = 1 ∈ A(X)[t].

In this sense the Chern classes are ”inverses” of Segre classes. More explicitely
by expanding: c1(E) = −Seg1(E), c2(E) = Seg1(E)2 − Seg2(E) and

cn(E) = − Seg1(E)cn−1(E)− Seg2(E)cn−2(E)− · · · − Segn(E).

We always write c0(E) = Seg0(E) = 1.

We note that the pull-back π∗ makes A(P(E)) into a module over A(X).
This module is free and generated by c1(O(1))i for i = 0, . . . , r − 1. Using this
and Theorem 3.1.4 we obtain that the ci(E) are the unique elements of A(X)
that allow to decompose c1(O(1))r in the basis above. Indeed let ξ = c1(O(1)).
There must exist classes xi ∈ Ai(X) which satisfy

ξr +

r−1∑
i=0

π∗(xi)ξ
i = 0.
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Theorem 3.1.5 (Projection formula). For a proper morphism π we have:

π∗(π
∗(A)B) = Aπ∗(B).

Multiplying the equation above the theorem by ξr−1, applying π∗ and the
projection formula, we obtain the formula as in Theorem 3.1.4 for n = r and
xi = cdimX−i(E).

Remark 3.1.6. One needs to be very careful about signs conventions, as all
possible problems appear in the literature. The first one is with the construction
of P(E). For some authors the fibers are P(Ex), for some P(E∗x). This also
depends on if the projective space parameterizes lines or hyperplanes. Second
is sign convention for Segre classes. Some authors set Seg1(E) = c1(E). Even
Fulton himself uses different conventions is his different books.

3.2 Chern roots

Definition 3.2.1. The Chern polynomial is defined as:

ct(E) :=

∞∑
i=0

ci(E)ti ∈ A(X)[t].

The total Chern class is defined as:

c(E) :=
∑

ci(E) ∈ A(X).

Theorem 3.2.2. For an exact sequence of vector bundles:

0→ V1 → V2 → V3 → 0,

we have ct(V2) = ct(V1)ct(V3).

Note in particular that if E is a direct sum of line bundles E =
⊕r

i=1 Li, then
the Chern polynomial factors ct(E) =

∏r
i=1(1 + c1(Li)t). Although in general

we are interested in cases when E does not split, it turns out that, when proving
equalities among Chern classes it is enough to restrict to such cases. Formally
the splitting principle is presented in [EH16, Section 5.4]). In general, one can
’pretend’ that ct(E) factors.

We now describe this powerful method to compute Chern classes. One for-
mally writes:

ct(E) =

r∏
i=1

(1 + ait). (1)

The ai are just formal expressions - they do not need to be some classes! Only
elementary symmetric polynomials in those classes give the Chern classes. Ex-
plicitly e1(ai) =

∑
ai = c1(E), e2(ai) = c2(E). But now note that any symmet-

ric polynomial in ai’s makes sense! Indeed, the ring of symmetric polynomials
is generated by the elementary symmetric polynomials.

Chern roots give an easy way to describe how Chern classes change under
basic operations. Let E ,F be vector bundles with chern roots ai, bj .
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Proposition 3.2.3. We have:

• the roots for E∗ are −ai;

• the roots for E ⊗F are ai + bj (note that there are (rk E) · (rkF) many of
those);

• the roots of ∧pE are ai1 + · · ·+ aip for all sequences i1 < · · · < ip;

• the roots of SpE are ai1 + · · ·+ aip for all sequences i1 ≤ · · · ≤ ip;

Example 3.2.4. On P2, let −x := c1(O(−1)). The vector bundle (O(−1))⊕2

has (two, the same) Chern roots: −x,−x. The line bundle
∧2

(O(−1))⊕2 has

one Chern root: −x + (−x) = −2x, i.e. c1(
∧2

(O(−1))⊕2) = −2x. In the same
way we see that c1(O(a)) = c1(O(1)⊗a) = ax. As these are the only line bundles

on P2, we must have
∧2

(O(−1))⊕2 = O(−2).

Example 3.2.5. Consider G(r, V ) where dimV = n. Clearly ct(V ) = 1.
We also note that U∗ has natural sections, coming from linear functions

in V ∗. When do e∗1, . . . , e
∗
r−i+1 fail to be independent on an r-dimensional

subspace W ⊂ V ? (cf. Exercise 1.9.1) Precisely when W intersects the space
〈er−i+2, . . . , en〉 in dimension larger than expected. This gives us the Schubert
variety Σ(1,...,1,0,...,0), where 1 appears r times!

Hence:

ct(U∗) = 1 + t+ t2 + · · ·+ tr,

where the last Young diagram has r boxes.
Let’s recall the isomorphism A(G(r, V )) ∼= Z[x1, . . . , xr]

Sr/I from Theo-
rem 2.1.2: we can write

ct(U∗) = 1 + e1(x1, . . . , xr)t+ e2(x1, x2, . . . , xr)t
2 + · · · =

r∏
i=1

(1 + xit).

Comparing with (1), we see that under the isomorphism of Theorem 2.1.2, the
variables xi are precisely the Chern roots of the dual universal subbundle U∗.

Using (or even better not using, cf. Exercise 1.9.1) the exact sequence:

0→ U → V → Q→ 0

one can get:

ct(Q) = 1 + t+ t2 + · · ·+ tn−r,

where the last Young diagram has n− r boxes.
We would like to now compute ct(S

2U). We know that U has Chern roots

−x1, . . . ,−xr and ej(x1, . . . , xr) = . The Chern roots of S2U are −xi − xj
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and we want to compute the elementary symmetric polynomials in those. Let
us carry this out for G(2, 4). We have:

x1 + x2 = , x1 · x2 = .

Hence:

c1(S2U) = e1(−2x1,−x1 − x2,−2x2) = −3(x1 + x2) = −3

and

c2(S2U) = e2(−2x1,−x1 − x2,−2x2) = 2(x1 + x2)2 + 4x1 · x2 = 2 + 6

and

c3(S2U) = e3(−2x1,−x1−x2,−2x2) = −4x1x2(x1+x2) = −4 · = −4 .

Proposition 3.2.6. For E a vector bundle with Chern roots a1, . . . , ar, (hence
ci(E) = ei(a1, . . . , ar)) the i-th Segre class is given by Segi(E) = (−1)is[i](a1, . . . , ar),
the i’th complete homogeneous symmetric polynomial in the Chern roots. This
follows by combining Theorem 3.1.4 and the following identity of symmetric
polynomials: (

r∑
i=0

ei(x1, . . . , xr)t
i

) ∞∑
j=0

s[j](x1, . . . , xr)t
j

 = 1.

3.3 Chern character

Once we know the Chern roots it is easy to define the Chern character.

Definition 3.3.1. Let E be a vector bundle of rank r with Chern roots x1, . . . , xr.
We define the Chern character ch(E) by:

ch(E) =

r∑
i=1

exi .

Here, exi should be understood as
∑∞
n=0 x

n
i /n!. We note that each single sum-

mand does not make sense. However, after summing them up, we obtain, in
each degree, a symmetric polynomial in the xi’s, i.e. a class in AQ(X).

It is also possible to write down explicitly:

ch(E) = r+ c1(E) +
1

2
(c1(E)2− 2c2(E)) +

1

6
(c1(E)3− 3c1(E)c2(E) + c3(E)) + . . . .

The expression above comes from writing the power sum polynomials in terms of
elementary symmetric polynomials, which may be done from Newton’s formula:

Pn − e1Pn−1 + e2Pn−2 − · · ·+ (−1)n−1en−1P1 + (−1)nnen = 0,

17



where Pi is the i-th power sum polynomial and ei is the i-th elementary sym-
metric polynomial.

Example 3.3.2. For the line bundle L and D = c1(L) we have: ch(L) =
1 +D +D2/2! + . . . .

Theorem 3.3.3. For an exact sequence of vector bundles

0→ V1 → V2 → V3 → 0

we have:
ch(V2) = ch(V1) + ch(V3).

For any two vector bundles V, V ′ we have:

ch(V ⊗ V ′) = ch(V )ch(V ′).

Proof. For the first equality: we already know that ct(V2) = ct(V1)ct(V3), i.e. the
set of Chern roots of V2 is the union of the set of Chern roots of V1 and V3.
Hence, the k-th power sum of Chern roots for V2 is the sum of the k-th power
sums of Chern roots for V1 plus k-th power sum of Chern roots for V3.

For the second equality:∑
i,j

exi+yj = (
∑
i

exi)(
∑
j

eyj ).

Corollary 3.3.4. The Chern character is a well-defined map

ch : KQ(X)→ AQ(X)

preserving the ring structure. This is an isomorphism!

Remark 3.3.5. We also have a map A(X) → H∗(X) and the induced map
K(X) ⊗ Q → H∗(X,Q) taking its values in the even part of the cohomology
ring. (Not an isomorphism in general!)

Example 3.3.6. Let X = Pn and H = c1(O(1)). We have:

ch(O(1)) = 1 +H +H2/2! + · · ·+Hn/n!.

Hence:
ch(O(−1)− 1) = −H +H2/2! + · · ·+ (−H)n/n!.

Recall that: K(Pn)⊗Q = Q[x]/(xn+1), where x = O(−1)− 1 and A(X)⊗Q =
Q[H]/Hn+1. The isomorphism of the two rings given by the Chern character
satisfies the equality above.
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3.4 Exercises

Exercise 3.4.1. Prove the formula for ct(Q).

Exercise 3.4.2. Compute the Segre classes of S2U on G(2, 4).

Exercise 3.4.3. Prove Proposition 3.2.6. Possible hint:

0→ U → V → Q→ 0.

Also redo Exercise 1.9.1 in one sentence.

4 The variety of complete quadrics (including
ML-degrees in algebraic statistics)

4.1 ML-degrees in algebraic statistics

In the one-dimensional case, in order to determine a Gaussian distribution on
R, one needs to specify its mean µ ∈ R and its variance σ ∈ R>0. In the
n-dimensional case, the mean is a vector µ ∈ Rn, and the second parameter
is a positive-definite n × n covariance matrix Σ. The corresponding Gaussian
distribution on Rn is given by

fµ,Σ(x) :=
1√

(2π)n det Σ
e−

1
2 (x−µ)TΣ−1(x−µ),

where T denotes the transpose.
A sample of such a distribution is just a point in Rn. Given many samples,

we may want to reconstruct µ and Σ. But what does that mean? Theoretically,
any µ and Σ could have lead to the samples we obtained.

In statistics one looks for the parameters that maximize the likelihood func-
tion. In our case this is the product

∏
i fµ,Σ(si), where si ∈ Rn are the samples

we observed. Finding µ and Σ that maximize this function exactly means find-
ing the parameters that best explain our observation. As intuition dictates, it
turns out that the best µ is the average of the si’s. The optimal Σ0 is also
determined (as an average of rank one covariance matrices obtained from each
sample).

Let V be an n-dimensional vector space. We can identify S2(V ) with the
space of symmetric n× n-matrices. In what follows we will focus on Σ ∈ S2V ,
but we will not allow it to be an arbitrary symmetric matrix. In statistics this is
called choosing a model, and we will study the linear concentration model. The
symmetric matrix K := Σ−1 ∈ S2V ∗ is know as the concentration matrix. In
the linear concentration model we want K to belong to a fixed linear subspace
L ⊂ S2V ∗ of symmetric matrices. In other words Σ ∈ L−1 = {K−1 : K ∈ L} ⊂
S2V . In fact in the previous definition we only invert the invertible matrices in
L and most often we abuse the notation and let L−1 be the closure of the set
{K−1 : K ∈ L}. Hence our aim now is not to maximize the likelihood function
over the space S2V , but over the variety L−1.
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Theorem 4.1.1. The maximum likelihood estimate for the linear concentration
model is the unique positive definite matrix Σ′ that has the same image as Σ0

under the projection π : S2V → S2V/L⊥. Here L⊥ is the (linear) space of
linear forms that vanish on L.

The map π|L−1 : L−1 → S2V/L⊥ is finite but not bijective, i.e. there could
be many matrices in π−1(π(Σ0)) ∩ L−1, but the one that is positive definite is
the maximum likelihood estimate. However it is the cardinality of the fiber that
measures the complexity of describing Σ′ in terms of Σ0.

Definition 4.1.2. The maximum likelihood degree is the degree of the (finite)
map π|L−1 .

For L general, the ML-degree depends on: d = dimL and n. It is denoted
by φ(n, d).

Theorem 4.1.3 (Teissier [Tei73, LTT88]). φ(n, d) = degL−1

Rather than proving this theorem it is very important (exercise!) to realize
why it is not obvious! For more elementary proofs of this theorem we refer to
[SU10, KWJ20].

Passing to the complex projective space φ(n, d) is the number of pairs (K,Σ) ∈
P(S2V )× P(S2V ∗) with

Σ ·K = Idn, K ∈ L, Σ ∈M,

where L ⊂ P(S2V ) andM⊂ P(S2V ∗) are general linear subspaces, of dimension
(d− 1) respectively codimension (d− 1).

Let X ⊂ P(S2V )× P(S2V ∗) be the variety parametrized by (K,K−1). The
points of X are all pairs (K,Σ) ∈ P(S2V ) × P(S2V ∗) with K · Σ = Idn or
K · Σ = 0.

The computation of φ(n, d) now reduces to computation in the Chow ring
of X. However, a tachinical difficulty arises: X is singular. We will replace it
with a smooth variety: the space of complete quadrics.

One could ask why we cannot do the computation of the quadrics directly
on P(S2V ). Let us present the following example.

Example 4.1.4. Consider the five dimensional projective space of plane quadrics
in three variables P(S2C3) = P(S2V ).

First we ask how many quadrics pass through five general points? Passing
through one point is a hyperplane condition in P(S2V ). After intersecting five
such, we obtain precisely one quadric. Thus, as we know, there is precisely one
quadric passing through five general points.

Now let us ask how many quadrics are tangent to five general lines. First
note that a quadric Q ∈ P(S2V ) is tangent to a line (which is also a hyperplane)
l ⊂ P(V ) if and only if the dual quadric Q∨ ∈ P(S2V ∗) passes through a point
corresponding to l ∈ P(V ∗). This is a quadratic condition in the entries of Q,
i.e. there is a quadric Sl ⊂ P(S2V ), which points correspond to quadrics that
are tangent to l. Let us now provide two answers to the original question.
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Answer 1: We have to intersect five quadrics in the space P(S2V ), thus by
Bezout’s theorem we get 25 = 32 points.

Answer 2: We do the computation in P(S2V ∗), i.e. instead of counting Q’s
that satisfy the condition we count the Q∨’s. Here, the five lines correspond to
five general points. Hence, it is a problem that we already answered: there is
one Q∨.

Clearly 1 6= 32. What went wrong? Which answer is correct?
The problem is that the five quadrics in Answer 1 do not intersect in 32

points. These quadrics are not general. They are (general) linear combinations
of 2 × 2 minors. In particular they all vanish on the variety V1 ⊂ P(S2V ) of
rank one matrices. What actually happens is that if we intersect five of those,
we will get the variety V1 and... one point, corresponding to the unique quadric
Q that is tangent to five lines, which we found in Answer 2.

Why didn’t we have this problem when computing the number of quadrics
going through five points? After all here the hyperplane conditions are also not
complete general. However, in this case our hyperplanes do not have the base
locus (i.e. they do not vanish on some variety). Put yet differently: in the first
case of points the intersection is transversal, while in the second case of lines it
is not.

Doing such computations, when the system has base locus belongs to the
domian know as excess intersection theory. This is hard. What best works in
practice is to change the space on which we perform intersection in order to
avoid the base locus. This is precisely what we did in Answer 2 and what we
will do to compute φ(n, d).

4.2 The space of complete quadrics

For A ∈ S2(V ), we write ∧kA ∈ S2(∧kV ) for the k-th compound matrix. In
coordinates, ∧kA is the

(
n
k

)
×
(
n
k

)
-matrix whose entries are the k × k-minors of

A. The coordinate-free description is as follows: if we view A as a linear map
V ∗ → V , then ∧kA : ∧k(V )∗ ∼= ∧k(V ∗) → ∧kV . Note that ∧n−1A = adj(A),
the adjugate matrix of A.

Definition 4.2.1. The variety CQ(V ) of complete quadrics is the closure of the
image of the set of invertible matrices under the map

ϕ : P(S2V ) 99K P
(
S2V

)
× P

(
S2(

2∧
V )

)
× · · · × P

(
S2(

n−1∧
V )

)
,

sending a matrix A to (A,
∧2

A, . . . ,
∧n−1

A).

So a point in CQ(V ) is given by a tuple (A1, . . . , An−1) of symmetric matrices

Ai ∈ P
(
S2(
∧k

V )
)

. For a general point, all these matrices will be invertible

and Ai = ∧kA1. However, since in the definition we took a closure, there are
other points in CQ(V ).
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Figure 1: A conic degenerating to a double line with two marked points.

Example 4.2.2. Let V = C3. For every ε ∈ C∗, the point

(

−ε 0 0
0 ε 0
0 0 1

 ,

− 1
ε 0 0

0 1
ε 0

0 0 1

) = (

−ε 0 0
0 ε 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 ε

) ∈ P(S2V )×P(S2(V ∗))

is contained in CQ(V ). Taking the limit ε→ 0, we find that

(

0 0 0
0 0 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 0

) ∈ CQ(V ).

The name complete quadrics is explained by the following geometric inter-
pretation: a matrix A ∈ S2(V ) defines a quadric hypersurface Q in P(V ∗); cut
out by the equation xTAx. More generally, the matrix ∧kA defines a quadric
hypersurface Qk in the Grassmannian G(k− 1,P(V ∗)), cut out by the equation
PT ∧k AP in the Plücker coordinates.

Lemma 4.2.3. Geometrically, Qk is the space of (k − 1)-planes tangent to
Q = Q0.

Proof. The space W = 〈w1, . . . , wk〉 is tangent to the quadric Q if and only if

there exist p1, . . . , pk ∈ C not all equal to zero, such that Q(
∑k
i=1 piwi, w) = 0

for any w ∈ W (where in the last equality we treat Q as a 2-form). This
happens if and only if the k×k matrix with (i, j)-entry Q(wi, wj) is degenerate,
i.e. the determinant of that matrix equals zero. But that determinant equals
(
∧k

Q)(
∧k
i=1 wi,

∧k
i=1 wi), i.e. the evaluation of the quadric

∧k
Q on the point

of the Grassmannian ,
∧k
i=1 wi corresponding to the space W .

So a point A = (A1, . . . , An−1) ∈ CQ(V ) is given by a collection of (possibly
nonsmooth) quadrics Qk = Q(Ak) ⊂ G(k−1,PV ∗). For a general A, all Qk are
smooth, and Qk is the space of (k − 1)-planes tangent to Q1.

Example 4.2.4. Let us revisit Example 4.2.2: if A0 =

−ε 0 0
0 ε 0
0 0 1

, then

Q0 ⊂ P(V ∗) is the smooth conic with equation εx2
0 = εx2

1+x2
2. Q1 ⊆ P(V ) is the

dual conic; it is the space of lines tangent to Q0, and has equation β2
0 = β2

1 +εβ2
2 ,

where βi are the coordinates on V .
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For people familiar with blow-ups, we give an alternative construction of
the space of complete quadrics. Start with the space P(S2V ) and consider the
following sequence of blow-ups

P(S2V ) = X0 ←− X1 ←− · · · ←− Xn−2 =: CQ(V ), (2)

where Xi is the blow-up of Xi−1 at the strict transform of the locus of rank i
matrices.

Below we present one more point of view on points of CQ(V ). The general
idea is the following inductive description: a point p ∈ CQ(V ) is a quadric Q
on V and a point on CQ(V/ imQ).

Given a flag ∅ = U0 ⊂ U1 ⊂ . . . ⊂ Uk = V , and for every j ∈ {1, . . . , k}
a smooth quadric (i.e. a full symmetric matrix) Mj ∈ P(S2(Uj/Uj−1)), we can
construct a complete quadric as follows. We will write dj := dimUj . For every
j ∈ {1, . . . , k} and ` ≤ dj − dj−1, we have a linear map

ϕj,` : S2

(∧̀
(Uj/Uj−1)

)
→ S2

dj−1+`∧
V


induced from the map

∧`
(Uj/Uj−1)→

∧dj−1+`
V sending v1 ∧ . . . ∧ v` to u1 ∧

. . .∧udj−1
∧ v1 ∧ . . .∧ v`, where u1, . . . , udj−1

is a basis of Uj−1. Then the point(
ϕ1,1(M1), . . . , ϕ1,d1(M1), ϕ2,1(M2), . . . , ϕ2,d2−d1(M2), . . . , ϕk,n−dk−1−1(Mk)

)
∈ P(V )× P(∧2V )× · · · × P(∧n−1V ) (3)

lies in CQ(V ). One can verify that this gives rise to a one-to-one correspondence{
flags ∅ = U0 ⊂ U1 ⊂ . . . ⊂ Uk = V
and ∀j ∈ {1, . . . , k} : Mj ∈ P(S2(Uj/Uj−1))

}
1:1←→ CQ(V ). (4)

Here is a geometric interpretation: the matrix Mj ∈ P(S2(Uj/Uj−1)) correponds
to a quadric qj ⊆ V ∗ which is contained in U⊥j−1 ⊆ V ∗ and is a cone over U⊥j .
The corresponding complete quadric is then a tuple (Q1, . . . , Qn−1), where for
dj < k ≤ dj+1, Qi ⊆ G(k − 1,P(V ∗)) is a the quadric of (k − 1)-planes Λ for
which Λ ∩ U⊥j−1 is tangent to qj .

Example 4.2.5. Consider n = 2, ie. 2 × 2 symmetric matrices. The space
P(S2V ) is two dimensional. The map P(S2V )→ P(S2V ∗) is regular and in fact
a linear isomorphism. Hence, in this case the graph of the map and the space of
complete quadrics are simply CQ(V ) = P2. The pull-backs of the hyperplanes
in P(S2V ) and P(S2V ∗) are simply hyperplanes in CQ(V ). The rank n− 1 = 1
matrices form a quadric (defined by the determinant of the 2 × 2 symmetric
matrix).

Example 4.2.6. Consider n = 3, ie. 3 × 3 symmetric matrices. The space
P(S2V ) is five dimensional. The map P(S2V ) 99K P(S2V ∗) is rational, not
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rk(A) = 3, rk(B) = 3 rk(A) = 1, rk(B) = 2

rk(A) = 2, rk(B) = 1 rk(A) = 1, rk(B) = 1

Figure 2: The four types of complete conics

defined on the locus of rank n−2 = 1 matrices. In this case the graph of the map
and the space of complete quadrics are isomorphic and are the blow-up of rank
1 matrices. A point of CQ(V ) is a pair of matrices (A,B) ∈ P(S2V )× P(S2V ∗)
such that either:

• A has rank 3 or 2 and B is the adjugate matrix. Note that if A has rank
3 then so does B and hence A may be reconstructed from B. However, if
A has rank 2 then B has rank 1 and all matrices with the same image as
A may be paired with B.

• A has rank 1 and B has rank 2. This is dual to the case of rank 2 matrix
above.

• A has rank 1 and B has rank 1. Here B is a rank one matrix that vanishes
on the image of A.

Remark 4.2.7. There is an isomorphism CQ(V ) ∼= CQ(V ∗), induced from

P
(
S2V

)
× · · · × P

(
S2(

n−1∧
V )

)
→ P

(
S2V ∗

)
× · · · × P

(
S2(

n−1∧
V ∗)

)
(A1, . . . , An−1) 7→ (An−1, . . . , A1),

where we used S2
∧k

V ∼= S2
∧n−k

V ∗.

24



4.3 Degeneration spaces

For each r ∈ {1, . . . , n− 1}, we define a subvariety Sr ⊂ CQ(V ):

Sr ={(A1, . . . , An−1) ∈ CQ(V ) | rkAr = 1}

={(A1, . . . , An−1) ∈ CQ(V ) | rkA1 = r}

={(A1, . . . , An−1) ∈ CQ(V ) | rkAn−1 = n− r}.

Under the correspondence (4), Sr consists of all complete quadrics whose flag
contains a space Uj of dimension r. Alternatively, Sr is the strict transform
of the exceptional locus of the blow-up Xr−1 ←− Xr in (2). From this last
description it follows that Sr ⊂ CQ(V ) is irreducible of codimension one. A
general point in Sr is determined by a rank one matrix A1 and rank n−r matrix
An−1 that vanishes on the image of A1. The image of A1 (resp. kernel of An−1)
is parameterized by the Grassmannian G(r, n). The following computation also
shows that Sr is a divisor:

(n− r)r +

(
r + 1

2

)
− 1 +

(
n− r + 1

2

)
− 1 =

(
n+ 1

2

)
− 1− 1.

4.4 ML-degree via complete quadrics

CQ(V ) is a smooth variety that fits in the diagram

CQ(V )

P(S2V ) P(S2V ∗)

π1 πn−1

A7→A−1

We can express our ML-degrees φ(n, d) as follows: φ(n, d) = |π−1
1 (L)∩π−1

n−1(M)|,
where L ⊆ P(S2V ) and M ⊆ P(S2V ∗) are generic linear subspaces with
dim(L) = d− 1 and codim(M) = d− 1.

Thus, we need to compute the product [π−1
1 (L)][π−1

n−1(M)] in the Chow ring
of CQ(V ). In this lecture, we will not give a complete description of this Chow
ring. Instead, we will only describe the Picard group (which is the degree 1 part
of the Chow ring), and then explain how our computation on A(CQ(V )) can
be reduced to a computation on the Chow ring of the Grassmannian, which we
know.

Remark 4.4.1. It is possible to construct an affine stratification of CQ(V )
[Str86], and hence by Theorem 1.5.2 give a Z-basis of its Chow ring. Describing
the ring structure is more complicated, see for instance [DCGMP88].

For i ∈ {1, . . . , n − 1}, we define a class Li ∈ A1(CQ(V )) as Li = π∗i ([H]),

where H ⊆ P(S2
∧i

V ) is a general hyperplane. Abusing notation, we will denote
the class of the degeneration space Sr ⊂ CQ(V ) also by Sr ∈ A1(CQ(V )).
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Proposition 4.4.2. The classes L1, . . . , Ln−1 form a basis of Pic(CQ(V )), in
which the classes S1, . . . , Sn−1 are given by the relations

Si = −Li−1 + 2Li − Li+1,

with L0 = Ln := 0.

Proof. These relations were already known to Schubert [Sch94]. For a modern
treatment, see for example [Mas20, Proposition 3.6 and Theorem 3.13].

Proposition 4.4.3.

φ(n, d) = deg(L
(n+1

2 )−d
1 Ld−1

n−1)

Let us use the relations from Proposition 4.4.2 to rewrite this:

φ(n, d) =

∫
CQn

L
(n+1

2 )−d
1 Ld−1

n−1

=
1

n

∫
CQn

L
(n+1

2 )−d−1

1 Ld−1
n−1

n−1∑
s=1

sSn−s (5)

=
1

n

n−1∑
s=1

s

∫
CQn

L
(n+1

2 )−d−1

1 Ld−1
n−1Sn−s

Perhaps surprisingly, the products
∫
CQn

L
(n+1

2 )−d−1

1 Ld−1
n−1Sn−s will be easier to

understand than
∫
CQn

L
(n+1

2 )−d
1 Ld−1

n−1. We give them a name:

Definition 4.4.4. We define:

δ(m,n, r) =

∫
Sr

L
(n+1

2 )−m−1

1 Lm−1
n−1 =

∫
CQn

SrL
(n+1

2 )−m−1

1 Lm−1
n−1 .

Now (5) becomes

φ(n, d) =
1

n

n−1∑
s=1

sδ(d, n, n− s) (6)

Remark 4.4.5. The number δ is known as the algebraic degree of semidefinite
programming (SDP). It appears while studying the degrees of algebraic exten-
sions of numbers that are solutions to optimization problems of maximizing a
linear function over spectrahedra. There is also a purely geometric definition of
δ(m,n, r): is the dual degree of the variety obtained by intersecting the locus of
rank ≤ r symmetric n× n matrices with a projective m-plane. See [MMM+20,
Definition 1.4], [NRS10], [GvBR09].
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Our next aim is to get a better understanding of δ(m,n, r). For that we will
change the variety Sr to something more familiar. This is similar to passing
from P(S2V ) to CQ(V ). However currently our problem is not the base locus,
but the fact that Sr is quite complicated. Thus, we will build a variety that is
birational with Sr and such that the systems corrsponding to L1 and Ln−1 are
also basepoint free. As we are only interested in the number of points we get in
the intersection we will solve the problem on the new variety instead of Sr.

The first indication how to carry this out, was by describing the general
point of Sr as a pair of matrices (A1, An−1). First we needed to choose the
image of A1/kernel of An−1 which is a point [W ] ∈ G(r, V ). Next, we need
to choose A1. It is a symmetric linear map V ∗ → V with image contained in
W . In particular, it descends to (and is characterized by) the symmetric map
W ∗ → W . In other words, we choose A1 ∈ P(S2U)[W ]. Dually (i.e. replacing
V by V ∗) we see that the choice of An−1 corresponds to choosing a point in
P(S2Q∗)[W ].

What we have described above is a birational map

CQ(V ) 99K P(S2U)×G(r,V ) P(S2Q∗) := X.

The variety X is not a (projectivized) vector bundle. Rigorously it may be
defined as a subvariety of P(S2U ⊗ S2Q∗) consisting of rank one tensors, or as
a fiber product of the two projective bundles.

The next step is to understand what L1 and Ln−1 give on X. The divisor
L1 is a hyperplane condition on P(S2V ), i.e. it is a section of O(1). Restricting
O(1) from P(S2V ) = P(S2V ) × G(r, V ) to S2U we see that L1 is the divisor
corresponding to c1(O(1)). Consider the following commutative diagram:

X P(S2U)

P(S2Q∗) Gr(r, V )

π1

π2 i1

i2

The discussion above proves the following lemma.

Lemma 4.4.6.

δ(m,n, r) = π∗1(c1(OS2U (1))(
n+1
2 )−m−1)π∗2(c1(OS2Q∗(1))m−1)

Formally the class on the right needs to be pushed-forward to a point. In par-
ticular, we may first push it forward to G(r, n):

(i1)∗(π1)∗(π
∗
1(c1(OS2U (1))(

n+1
2 )−m−1)π∗2(c1(OS2Q∗(1))m−1))

In order to provide a more closed formula we present two general lemmas
[Ful98, Proposition 1.7, Theorem 3.2].

Lemma 4.4.7. Consider the fiber product diagram, where g1, g2 are flat and
f1, f2 are proper:
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X Y

Z W

f2

g2 g1

f1

Then (f2)∗g
∗
2 = g∗1(f1)∗ as functions of Chow groups A(Z)→ A(Y ).

Lemma 4.4.8. For a proper map f : Y → X we have:

f∗(f
∗(x)y) = xf∗(y),

for any x ∈ A(X) and y ∈ A(Y ).

We now have:

(i1)∗(π1)∗

(
π∗1(c1(OS2U (1))(

n+1
2 )−m−1)π∗2(c1(OS2Q∗(1))m−1)

)
=

(i1)∗

(
(c1(OS2U (1))(

n+1
2 )−m−1)((π1)∗π

∗
2(c1(OS2Q∗(1))m−1))

)
=

(i1)∗

(
(c1(OS2U (1))(

n+1
2 )−m−1)(i∗1i2∗(c1(OS2Q∗(1))m−1))

)
= (7)(

(i1)∗(c1(OS2U (1))(
n+1
2 )−m−1

) (
i2∗(c1(OS2Q∗(1))m−1))

)
Using the definition of the Segre class we obtain the following proposition.

Proposition 4.4.9. If
(
n−r+1

2

)
≤ m ≤

(
n+1

2

)
−
(
r+1

2

)
4, then

δ(m,n, r) =

∫
G(r,n)

Seg((n+1
2 )−m−(r+1

2 ))(S2U) Seg(m−(n−r+1
2 ))(S2Q∗),

and otherwise δ(m,n, r) = 0

4.5 Exercises

Exercise 4.5.1. Express (multiplicities of) Si’s in terms of Li’s.

Exercise 4.5.2. Compute δ(3, 3, 2).

Exercise 4.5.3. Compute φ(4, 3).

5 Lascoux coefficients, polynomiality

In the previous lecture, we introduced the ML-degree φ(n, d), interpreted it
as an intersection number on the space of complete quadrics, and reduced the
computation of φ(n, d) to a computation in the Chow ring of the Grassmannian.
In this final lecture, we will proceed to give an explicit combinatorial formula
for φ(n, d). This can be used to compute the ML-degree effectively, and will also
allow us to prove a conjecture by Sturmfels and Uhler that for fixed d, φ(n, d)
is a polynomial in n.

4these are known as Pataki’s inequalities
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5.1 The Lascoux coefficients

In order to compute the product (4.4.9), we first consider the Segre classes of
S2U , where U is the universal subbundle of the Grassmannian G(r, n). Like any
element of A(G(k, n)), we can expand Segd(S

2U) in Schubert classes:

Segd(S
2U) =

∑
λ

cλσλ (8)

where the sum is over all Young diagrams λ of weight d that fit inside an
r × (n − r) box, and the coefficients cλ ∈ Z (which a priori could depend on n
and r) remain to be determined.

Definition 5.1.1. The Lascoux coefficients ψλ (where λ is a partition, possibly
with trailing zeroes) are the coefficients appearing in the Schur expansion of the
complete homogeneous symmetric polynomial in sums of variables xi + xj :

s[d]({xi + xj | 1 ≤ i ≤ j ≤ r}) =
∑
λ

ψλsλ(x1, . . . , xr), (9)

where the sum is over all partitions of weight d and length r.

Proposition 5.1.2. The coefficients appearing in (8) are the Lascoux coeffients.
Precisely, we have

Segd(S
2U) =

∑
λ

ψλσλ, (10)

where the sum is over all partitions λ of weight d and length r with λ1 ≤ n− r.

Proof. The Chern roots of U are −x1, . . . ,−xr, hence the Chern roots of S2U
are {−xi− xj | 1 ≤ i ≤ j ≤ r}. Hence by Proposition 3.2.6, the d’th Segre class
of S2U equals

Segd(S
2U) = (−1)ds[d]({−xi−xj | 1 ≤ i ≤ j ≤ r}) = s[d]({xi+xj | 1 ≤ i ≤ j ≤ r}).

(11)
The result now follows from the definition of ψλ and the identification ofA(G(k, n))
with a quotient of the ring of symmetric polynomials.

Remark 5.1.3. • Recall that we allowed partitions to have trailing zeroes.
This is important: in contrast to for example the Littlewood-Richardson
coefficients, adding trailing zeroes to a partition λ might change the Las-
coux coefficient ψλ.

• It will often be useful to use the bijection λ 7→ I(λ) from Section 1.6 and
index the Lascoux coefficients by subsets of N instead of partitions. We
will simply write ψI instead of ψλ(I). This is the notation usually used in
the literature [LLT89, MMM+20, Sey].

• We note that Lascoux coefficients appear in many publications with dif-
ferent notations. In particular one needs to be careful with the shift:
ψ{j1,...,jr} as defined above equals ψ{j1+1,...,jr+1} in [GvBR09]. On the
other hand our notation is consistent with [LLT89, NRS10].
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Example 5.1.4. In Exercise 3.4.2 we computed the Segre classes of S2U on
G(2, 4):

3 , 7 + 3 , 10 , 10 .

Their coefficients are the Lascoux coefficients, namely:

ψ0,2 = 3, ψ0,3 = 7, ψ1,2 = 3, ψ1,3 = 10, ψ2,3 = 10.

We use boldface and emphasis above and below to indicate the same numbers.
We may also compute them by expanding complete symmetric polynomials,
where now x1, x2 are simply formal variables.

s[2](2x1, x1 + x2, 2x2) = 7x2
1 + 7x2

2 + 10x1x2 =

= 7(x2
1 + x1x2 + x2

2) + 3x1x2 = 7s[2,0](x1, x2) + 3s[1,1](x1, x2).

5.2 Combinatorial formulas for φ and δ

Recall there is an isomorphism Φ : G(r, V ) ∼= G(n − r, V ∗), sending an r-plane
Λ ⊂ V to the plane Λ⊥ of linear functions vanishing on Λ. It identifies the dual
quotient bundle Q∗ on G(r, V ) with the universal subbundle U on G(n− r, V ∗).
Moreover, Φ sends the Schubert cell Σλ of G(r, V ) to the Schubert cell ΣλT of
G(n− r, V ∗).

Hence we can express the Segre class of Segd(S
2Q∗) in terms of our Lascoux

coefficients:
Segd(S

2Q∗) =
∑
λ

ψλT σλ

where the sum is over all Young diagrams of weight d that fit inside an (n−r)×r
box.

We can now write down a combinatorial formula for δ:

δ(m,n, r) =

∫
G(r,n)

Seg((n+1
2 )−m−(r+1

2 ))(S2U) Seg(m−(n−r+1
2 ))(S2Q∗)

=

∫
G(r,n)

 ∑
λ`(n+1

2 )−m−(r+1
2 )

ψλσλ


 ∑
µ`m−(n−r+1

2 )

ψµT σµ


=

∑
µ`m−(n−r+1

2 )

ψµcψµT ,

where in the last equality we used Exercise 1.9.3. It is convenient to switch
our notation to subsets: letting I = I(µT ), we have #(I) = n − r and

∑
I =

m−
(
n−r+1

2

)
+
(
n−r

2

)
= m− n+ r. Moreover one can easily verify that for λ a

partition fitting inside an r× (n− r) box, we have I((λc)T ) = [n] \ I(λ). Hence
our formula becomes
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Theorem 5.2.1 ([GvBR09, Theorem 1.1]). For 0 < m <
(
n+1

2

)
and 0 < r < n,

δ(m,n, r) =
∑
I⊂[n]

#I=n−r∑
I=m−n+r

ψIψ[n]\I .

As an immediate corollary, we get a formula for φ(n, d):

Corollary 5.2.2.

φ(n, d) =
1

n

∑
1≤(s+1

2 )≤d

s
∑
I⊂[n]
#I=s∑
I=d−s

ψIψ[n]\I

Proof.

φ(n, d) =
1

n

n−1∑
s=1

sδ(d, n, n− s)

=
1

n

∑
1≤(s+1

2 )≤d

sδ(d, n, n− s)

=
1

n

∑
1≤(s+1

2 )≤d

s
∑
I⊂[n]
#I=s∑
I=d−s

ψIψ[n]\I

where the second equality follows from Pataki’s inequality: δ(d, n, n − s) = 0
whenever

(
s+1

2

)
≥ d.

5.3 More on the Lascoux coefficients

There are several combinatorial formulas and recursive relations between the
Lascoux coefficients.

Theorem 5.3.1. 1. For #I = 1, we have ψI = ψ{i} = 2i.

2. For #I = 2, we have ψI = ψ{i,j} =
∑j
k=i+1

(
i+j
k

)
.

3. For any I = {i0, . . . , ir}

(r + 1)ψ{i0,...,ir} − 2

r∑
`=0

ψ{i0,...,i`−1,...,ir} =

{
ψ{i1,...,ir} if i0 = 0,

0 else.
(12)

where the summation is over all ` for which i` − 1 > i`−1. Together with
1. , these recursive relations determine ψI uniquely.
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4. For I = {i1 < . . . < ir}:

ψI =
∑
J<I

det

(
ik
jl

)
1≤k,l≤r

,

where the sum is over all J = {j1 < . . . < jr} 6= I with jk ≤ ik∀k.

5. For r > 2, ψI can be computed as

ψI = Pf(ψ{ik,il})0<k<l≤n for even r,

ψI = Pf(ψ{ik,il})0≤k<l≤n for odd r,

where ψ{i0,ik} := ψ{ik}, and Pf(ψ{ik,il}) is the Pfaffian of the skew-symmetric
matrix with (k, l)th entry ψ{ik,il} if ik < il and −ψ{il,ik} if ik > il.

6. For j1 = 0 we have:

ψ{j1,j2,...,jr} =
∑

j`≤j′`<j`+1

ψ{j′1,...,j′r−1}. (13)

We will only prove the formulas that we will use later. For the other ones,
see [LLT89, Appendix].

Proof of 1. Follows immediately from s[i](2x1) = 2is[i].

Proof of 3. The following proof is adapted from [Pra96, p. 163-166]. We will
make use of the symmetrizing operator

∆ : Z[x1, . . . , xr+1]Sr×S1 → Z[x1, . . . , xr+1]Sr+1

f(x1, . . . , xr+1) 7→
r+1∑
i=1

(
f(x1, . . . , x̂i, . . . , xr+1, xi)∏

j 6=i (xi − xj)

)

We will need the following properties of ∆, which a reader with some background
in symmetric polynomials can verify as an exercise:

0. ∆ is linear and well-defined, i.e. the expression above is really a polyno-
mial, and it is symmetric.

1. If f ∈ Z[x1, . . . , xr+1]Sr+1 and g ∈ Z[x1, . . . , xr+1]Sr×S1 , then ∆(fg) =
f∆(g).

2. ∆(xbr+1) =


0 if b < r,

1 if b = r,

x1 + · · ·+ xr+1 if b = r + 1.

3. ∆(sλ(x1, . . . , xr)) =

{
(−1)rs[λ1−1,...,λr−1,0](x1, . . . , xr+1) if λr > 0,

0 if λr = 0.
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Now for the actual proof: let’s write

Hr =
∏

1≤i≤j≤r

1

1− (xi + xj)
=

∞∑
d=0

s[d]({xi + xj | 1 ≤ i ≤ j ≤ r}).

then we have

Hr = Hr+1 ·
r+1∏
i=1

(1− xi − xr+1)

= Hr+1 ·

(
r+1∑
d=0

(−1)ded(x1, . . . , xr+1)(1− xr+1)r+1−d

)

by using 1 and 2 above, we find

∆(Hr) = Hr+1 ((r + 1)− 2(x1 + · · ·+ xr+1)) .

Our recursive formula now follows by expanding both sides in the Schur basis
(where for the left hand side we use 3 above, and for the right hand side we use
Pieri’s rule) and comparing coefficients.

Proof of 6. Recall that s[d] is the complete homogeneous symmetric polynomial
of degree d, and that we have:

s[d]({xi + xj | 1 ≤ i ≤ j ≤ r}) =
∑

λ(I) ` d
#I = r

ψIsλ(I)(x1, . . . , xr).

Substituting xr = 0 we obtain:

d∑
i=0

s[i]({xi + xj | 1 ≤ i ≤ j ≤ r − 1})s[d−i](x1, . . . , xr−1) =

s[d]({xi+xj | 1 ≤ i ≤ j ≤ r−1}, x1, . . . , xr−1) =
∑

λ(I) ` d
len(λ(I)) ≤ r − 1

ψIsλ(I)(x1, . . . , xr−1).

We note that len(λ(I)) ≤ r− 1 if and only if 0 ∈ I. On the other hand we may
apply Pieri’s rule to

d∑
i=0

s[i]({xi + xj | 1 ≤ i ≤ j ≤ r − 1})s[d−i](x1, . . . , xr−1) =

d∑
i=0

 ∑
λ(I) ` i

#I = r − 1

ψIsλ(I)(x1, . . . , xr−1)

 s[d−i](x1, . . . , xr−1).

Comparing the coefficients of Schur polynomials in both expressions gives the
formula.
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5.4 Polynomiality results

Our goal is to prove the following polynomiality result for the Lascoux coeffi-
cients.

Theorem 5.4.1. Let I = {i1, . . . , ir} be a set of strictly increasing nonnegative
integers. For n ≥ 0 the function:

LPI(n) :=

{
ψ[n]\I if I ⊆ [n],

0 otherwise.

is a polynomial.

As corollaries, we obtain polynomiality of δ and φ:

Corollary 5.4.2. For any fixed m, s > 0, the function δ(m,n, n− s) is a poly-
nomial in n. Moreover this polynomial vanishes at n = 0.

Proof. By Theorem 5.2.1, we have

δ(m,n, n− s) =
∑
I⊂[n]
#I=s∑
I=m−s

ψIψ[n]\I =
∑

#I=s∑
I=m−s

ψILPI(n)

By Theorem 5.4.1, each of the summands is a polynomial in n that vanishes for
n = 0. Thus δ(m,n, n − s) is also a polynomial in n, which proves Theorem
5.4.2, and hence Theorem 5.4.3.

Corollary 5.4.3. For any fixed d > 0, the function φ(n, d) is a polynomial for
n > 0.

Proof. For all n, d > 0, we have:

φ(n, d) =
1

n

∑
1≤(s+1

2 )≤d

sδ(d, n, n− s). (14)

By Corollary 5.4.2 every term in the right hand side of (14) is a polynomial
divisible by n, hence the theorem follows.

Before we prove Theorem 5.4.1, let us first give a few examples.

Example 5.4.4. By induction, one can check the following formulas for LPI ,
when I has cardinality one or two:

LP(i)(n) =

(
n

j + 1

)
, LP(0,j)(n) = j

(
n+ 1

j + 2

)
,

and more generally, for i < j,

LP(i,j)(n) =
(j − i)[n+ 1]j+2

(i+ 1)!(j + 1)!(i+ j + 2)!

i∑
d=0

(−1)dai,d(i+ j + 1− d)![n]i−d,

where ai,d =
∏d−1
k=0(i− k)(i− k + 1) and [n]d = n(n− 1) · · · (n− d+ 1).
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Proof of Theorem 5.4.1. We proceed by induction first on #I, then on
∑
I :=∑

ij∈I ij . The base case is I = ∅, when ψ{0,...,n−1} = 1.
For the induction step, fix I, and assume the theorem has been proven for all

I ′ with #I ′ < #I, and for all I ′ with #I ′ = #I and
∑
I ′ <

∑
I. We consider

two cases:
Case 1. i1 = 0. We claim that for every n ≥ 0,

LPI(n) = (n− r + 1)LPI\{0}(n)− 2
∑

`:i`+1>i`+1

LPI\{0,i`}t{i`+1}(n), (15)

where for summation we formally assume ir+1 = +∞. Indeed: if n ≤ ir then
both sides are 0, and if n > ir then the equation is precisely (12).

Case 2. i1 > 0. We claim that for every n ≥ 0,

LPI(n)− LPI(n− 1) =
∑
J

LPJ(n− 1), (16)

where the sum is over all J 6= I of the form {i1−ε1, . . . , ir−εr} with ε` ∈ {0, 1}.
Again, if n ≤ ir then both sides are 0, and if n > ir then the equation is precisely
(13).

In both cases, it follows that LPI is a polynomial.

Let’s try to determine the degree of this polynomial LPI . From the recur-
sions in the proof above, we get a candidate:

∑
I + #I. More precisely: if we

can show that in the right hand sides of (15) and (16) there is no cancellation in
the leading coefficients, then it follows inductively that deg(LPI) =

∑
I + #I.

One way of showing there is no cancellation is by finding and proving a formula
the leading coefficient and seeing that it is never 0. Such a formula was actually
obtained in [MMM+20, Theorem 4.2], but the proof is quite lengthy technical
and uses a different description of the Lascoux coefficients. We believe it can
be done more directly, leading to our first open problem:

Problem 5.4.5. Use the recursive relations (15) and (16) to prove a formula
for the leading coefficient of LPI , and deduce that this leading coefficient is never
0.

6 Further directions

6.1 Skew-symmetric and general matrices

We now know that for a generic d-dimensional linear space L of symmetric n×n
matrices, the degree φ(n, d) of L−1 is a polynomial in d. We can ask the same
question also for general square matrices, or for skew-symmetric matrices.

Definition 6.1.1. LetMn be the space of n×n-matrices over C, and A2n ⊂M2n

be the space of skew-symmetric matrices.

• The number φA(n, d) is the degree of the variety L−1, where L ⊆ P(Mn)
is a general linear subspace of dimension d− 1.
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• The number φD(n, d) is the degree of the variety L−1, where L ⊆ P(A2n)
is a general linear subspace of dimension d− 1.

Remark 6.1.2. A skew-symmetric matrix of odd size is always singular, which
is why we only consider the even case.

Computing these numbers can again be reduced to an intersection problem
on a suitable space. One way of defining this suitable space is by replacing in
Definition 4.2.1 symmetric matrices by general matrices or by skew-symmetric
matrices.

Definition 6.1.3. Let V and W be two vector spaces of equal dimension n.
The space P(V ∗ ⊗W ) represents linear maps from V to W ; the open subset
of rank n linear maps is denoted by P(V ∗ ⊗W )◦. Then the space of complete
collineations CC(V,W ) is defined as the closure of the image of the map

φ : P(V ∗⊗W )◦ → P(V ∗⊗W )×P

(
2∧
V ∗ ⊗

2∧
W

)
×. . .×P

(
n−1∧

V ∗ ⊗
n−1∧

W

)
,

given by
[A] 7→ ([A], [∧2A], . . . , [∧n−1A]).

As before, in coordinates this map sends a matrix to its minors of various sizes.

Definition 6.1.4. Let V be a 2n-dimensional vector space. The space of com-
plete skew-forms CS(V ) is defined as the closure of φ(P(

∧2
(V ))◦), where

φ : P

(
2∧
V

)◦
→ P

(
2∧
V

)
× P

(
4∧
V

)
× . . .× P

(
2n−2∧

V

)
,

given by
[A] 7→ ([A], [∧2A], . . . , [∧n−1A]).

We note that here ∧iA is viewed as an element of
∧2i

V , see also [Ber97,

Section 3]. In coordinates, the map
∧2

V →
∧2i

V sends the entries of a skew-
symmetric matrix to the Pfaffians of its principal 2i× 2i submatrices.

Similar to before, one can express φA(n, d) (resp. φD(n, d)) in terms of the
so-called type A (resp. type D) Lascoux coefficients, which allows us to show
that φA(n, d) (resp. φD(n, d)) is a polynomial in n. See [MMM+20, Section 6
and 7] for details.

Problem 6.1.5. The type A Lascoux polynomials LPAI,J(n) (where I, J ⊂ N
are subsets of the same size) were introduced in [MMM+20, Theorem 6.11].
From the recursive relations they satisfy, it follows that deg(LPAI,J(n)) ≤ #I +∑
I +

∑
J . Show that this is an equality, for instance by finding and proving

a formula for the leading coefficient. Same question for the type D Lascoux
quasipolynomials LPDI (n), defined in [MMM+20, Theorem 7.10].
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6.2 Projective duality

The algebraic degree of semidefinite programming δ(m,n, r) has a natural geo-
metric definition:

Definition 6.2.1. For 0 < m <
(
n+1

2

)
and 0 < r < n, let L ⊂ S2Cn be a

general linear space of symmetric matrices, of (affine) dimension m+ 1, and let
SDr,n

m ⊂ P(L) denote the projectivization of the cone of matrices of rank at
most r in L. Then δ(m,n, r) is the degree of the projective dual (SDr,n

m )∗ of
SDr,n

m if this dual is a hypersurface, and zero otherwise.

The equivalence of the above definition with our Definition 4.4.4 is proven
in [GvBR09, Proposition 4.1] (see also [MMM+20, Proposition 3.5]).

The above definition makes sense also for general (not necessarily square)
matrices, and for skew-symmetric matrices. For general square matrices and
skew-symmetric matrices of even size these were studied in [MMM+20, Sections
6 and 7]. In particular, we have analogues of Definition 4.4.4 and 5.2.1.

Problem 6.2.2. For general (non-square) matrices, interpret the dual degree
δ as an intersection problem on the space of complete collineations. Introduce
Lascoux coefficients ψ in this case, write δ in terms of ψ, and prove polynomiality
of ψ and δ. Same question for skew-symmetric matrices of odd size.

In Definition 6.2.1, it is known when (SDr,n
m )∗ is a hypersurface: namely

precisely when Pataki’s inequalities hold:(
n− r + 1

2

)
≤ m ≤

(
n+ 1

2

)
−
(
r + 1

2

)
. (17)

If m <
(
n−r+1

2

)
then SDr,n

m = ∅, but for m >
(
n+1

2

)
−
(
r+1

2

)
our dual variety

(SDr,n
m )∗ is nonempty and of codimension greater than one.

Problem 6.2.3. Study the dimension and degree of (SDr,n
m )∗ for m >

(
n+1

2

)
−(

r+1
2

)
. See [MMM+20, Section 8.A] for some precise conjectures.
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