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Introduction

If you ask 10 mathematicians the question “what is representation theory?”,
you will most likely get 10 different answers1. Here is my answer:

Representation theory is the study of symmetries of vector spaces.

The aforementioned symmetry is encoded by an algebraic object acting on the
vector space. In this course, we will deal with representation theory of groups, so
this algebraic object will be a group.

Scope of the course. This course can be roughly divided in two parts:

(1) Representation theory of finite groups (over C): This is the canonical
thing to teach in any first course on representation theory, and for good
reasons. After introducing basic concepts in representation theory and
proving some first important results (in particular: Maschke’s theorem on
complete reducibility and Schur’s lemma), we will introduce a powerful
tool named character theory. Thanks to character theory, we can basically
understand everything about the representation theory of any given finite
group.

(2) Representation theory of the symmetric group and the general linear group:
Two of the most important groups are the symmetric group Sd, and the
general linear group GL(n,C). For any fixed d, we can already understand
the representation theory of Sd by using the methods of part (1). We will
begin part (2) with a systematic study of the representation theory of
Sd for all d simultaneously; this involves some beautiful connections with
algebraic combinatorics (keywords here are “Young tableau” and “Schur
polynomial”). The general linear group GL(n,C) is not a finite group,
but it is deeply related to the symmetric group via Schur-Weyl duality,
which will allow us to understand its representation theory as well.

Limitations. Representation theory is a vast subject and obviously we can
only scratch the surface within the scope of any one-semester course. At the end
of the course we will have seen a first glimpse of representation theory of algebraic
groups (or if you want: Lie groups); a natural next step would be a general study
of representation theory of algebraic groups or Lie groups (and this is indeed the
next thing that is done in our main reference [FH91]). An important tool for this
which I most likely won’t be able to introduce even in the case of GL(n,C) is the
notion of a Lie algebra.

We will restrict ourselves to the field C during this course. Almost everything
we do will be equally valid for other algebraically closed fields of characteristic zero,
and for studying representation theory over non-algebraically closed fields one can

1I guess the same is true for most areas of Mathematics
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8 INTRODUCTION

get quite far by passing to the algebraic closure. On the other hand, representa-
tion theory over fields of positive characteristic (known as modular representation
theory) is an active area of research which is far outside the scope of this course.

Finally, there are many other flavors of representation theory, like representa-
tion theory of associative algebras or of quivers, that we won’t even have time to
mention.

Prerequisites. The only formal prequisite for this course is a good working
knowledge on linear algebra. I will also assume a little bit of familiarity with group
theory: all the necessary background on groups will be recalled in the first lecture,
but we will go over this quite fast.

In the current semester there is also a course on associative algebras taking place
at the university of Bern. Both courses are independent from one another, but there
will be some amount of overlap, in particular when we discuss the group algebra of
a finite group. I am not going to assume that all participants of the Representation
Theory course are also taking Associative Algebras, but I still wanted to point out
this connection.

References. For part 1, we will follow Lectures 1,2,3 in [FH91] quite closely.
Another excellent classical resource for this material is [Ser77]. The main reference
for part 2 are lectures 4 and 6 in [FH91].

Chapter 10 of [MS21] gives a brief overview of representation theory, but
sometimes without proofs. In fact, my original goal when planning this course was
to cover the material in that chapter, but more in depth.

Practicalities related to the course.

• The lecture takes place every Thursday 8:15-10:00 in ExWi room B116,
from September 23 up to and including December 16.

• Please remember that university regulations currently require all partic-
ipants to have a valid COVID certificate in order to attend the lecture.
Participants are also required to wear a mask.

• The only formal requirement to pass the course is to pass the oral exam
at the end of the semester. In particular, there is no “Testatbedingung”,
and you are not required to attend the lecture or solve/hand in exercises
(but you are of course encouraged to do so!). More info on the exam will
follow later.

• There will be (non-obligatory) homework exercises every two weeks, which
you can hand in via ILIAS. I will then provide feedback on your solutions.
Every homework will be accompanied by an exercise session (which will
occupy one half of that day’s lecture, i.e. 45 minutes). The first homework
will appear online at some point between lectures 1 and 2; the first exercise
session will be during lecture 3. I might shift the frequency of the exercise
sessions around a bit if that fits better with the course material.

• Any parts marked with a * can be safely ignored: I will not build on them
further nor ask about them in the exam.

• There is a forum on ILIAS that you can use to ask any (practical or
mathematical) questions related to the lecture. You can of course still ask
me questions live during or after the lecture, or contact me via e-mail.



CHAPTER 1

Preliminaries

This chapter contains background material on group theory and on linear alge-
bra that will be used throughout the course. The section on group theory essentially
starts from scratch. For the section on linear algebra I will assume familiarity with
basic linear algebra; the section is instead focused on introducing the tensor prod-
uct, which we will use very often. The study of tensor products and related notions
is sometimes referred to as multilinear algebra, hence the title of the section.

In an attempt to balance between providing enough background material to
get everyone on the same page, while at the same time not getting bogged down
for too long before starting with the actual content of the course, I decided to
do the following: In the first lecture of the semester we will quickly go through
the section on group theory, assuming that most things there are familiar from a
previous course in group theory. The remaining part of the first lecture will be
spent on going through the chapter on tensor products (more slowly, as I won’t
assume everyone is familiar with this). Independent of how far we get, in lecture
2 we will jump to Chapter 2 and start doing representation theory; the remaining
background on multilinear algebra we be introduced when we need it.

Both sections might be updated later in the semester, if I realize I forgot to
introduce something important.

1. A brief recap on group theory

Definition 1.1. A group (G, e, ∗) consists of
• a set G,
• a chosen element e ∈ G, called neutral element,
• a binary operation

∗ : G×G→ G

(g, h) 7→ g ∗ h

satisfying the following axioms:

• Associativity: for all f, g, h ∈ G, we have

f ∗ (g ∗ h) = (f ∗ g) ∗ h,

• Neutral element: for all g ∈ G, we have that

e ∗ g = g ∗ e = g,

• Inverse element: for each g ∈ G, there exists a g−1 ∈ G such that

g ∗ g−1 = e = g−1 ∗ g

9



10 1. PRELIMINARIES

The group is called abelian, if the operation is commutative, i.e. for all g, h ∈ G we
have

g ∗ h = h ∗ g.

Remark 1.2. As the neutral element is uniquely determined, one usually writes
(G, ∗) instead of (G, e, ∗), or even just G if the operation is clear from the context.
Additionally, when dealing with a group G = (G, ·), we will often write gh instead
of g · h.

Definition 1.3. A homomorphism (or simply morphism) of groups (G, ∗G) and
(H, ∗H) is a map φ : G→ H respecting the multiplication: φ(g1 ∗G g2) = φ(g1) ∗H
φ(g2). If φ is a bijective (resp. injective/surjective), then it is called an isomorphism
(resp. monomorphism/epimorphism). Note that if φ is an isomorphism, then the
inverse map φ−1 : H → G is also a morphism (and hence an isomorphism). If there
exists an isomorphism between G and H, we say G and H are isomorphic, and
write G ∼= H.

1.1. Examples.

Example 1.4. Here are some first examples of abelian groups:

• The integers Z form an abelian group with respect to addition.
• If (k,+, ·) is a field, then (k,+) and (k \ {0}, ·) are abelian groups.
• For n ∈ Z, we have the cyclic group (Z/nZ,+), which is a finite abelian

group. The elements of Z/nZ are the numbers 0, . . . , n − 1, and the
operation is addition modulo n.

Example 1.5. Consider a square in the plane. The set of isometries of the plane
that leave the square invariant is a non-abelian group (with group operation being
composition), known as the dihedral group D8. It has 8 elements: the identity,
three rotations, and four reflections.

More generally, for n ≥ 3 the set of isometries of a regular n-gon is a non-abelian
group with 2n elements, known as the dihedral group D2n.

Example 1.6. For d ∈ N, the symmetric group Sd is the set of all bijections from
the set [d] := {1, 2, . . . , d} to itself, with operation given by composition. Sd is a
finite group, with d! elements. It is customary to denote elements in Sd by cycle
notation. For instance, (164)(25) ∈ S6 denotes the permutation that sends 1 to 6,
6 to 4, 4 to 1, 2 to 5, 5 to 2, and fixes 3.

The sign (or signum) of a permutation σ ∈ Sd is defined as sgn(σ) := (−1)N(σ),
whereN(σ) is the number of pairs (i, j) ∈ [d]2 with i < j but σ(i) > σ(j). It can also
be defined by writing σ as a product of transpositions (ab); then sgn(σ) = (−1)m,
where m is the number of transpositions.

More generally if X is a set we can consider the group SX of bijections from
X to itself. If |X| = d <∞ then SX

∼= Sd (by identifying |X| with {1, . . . , d}).

Example 1.7. Let V be a k-vector space. The general linear group GL(V ) is the set
of automorphisms of V (i.e. invertible linear maps from V to itself), with the group
operation being composition. If V is n-dimensional and we choose a basis, we can
identify GL(V ) =: GL(n, k) with the group of invertible n×n matrices. The special
linear group SL(n, k) ⊂ GL(n, k) is the subgroup of matrices/automorphisms with
determinant one.



1. A BRIEF RECAP ON GROUP THEORY 11

1.2. Conjugacy classes.

Definition 1.8. We say that two group elements g1, g2 ∈ G are conjugate to each
other if there exists a h ∈ G such that h−1g1h = g2. One can easily verify that
being conjugate is an equivalence relation; the equivalence classes with respect to
this equivalence relation are called conjugacy classes.

Example 1.9. If G is abelian, every element is only conjugate to itself. Hence the
conjugacy classes are singletons.

Example 1.10. Two matrices in GL(n,C) are conjugate if and only if they have
the same Jordan normal form.

Exercise 1.11. Describe the conjugacy classes in S3. What about Sd for general
d? (See Proposition 7.2 for the answer.)

1.3. Group actions.

Definition 1.12. Let G be a group and X be a set. A left group action of G on
X is a map ϕ : G×X → X such that ϕ(e, x) = x and

(1.1) ϕ(gh, x) = ϕ(g, ϕ(h, x)),

for all x ∈ X and g, h ∈ G. Similarily, a right group action of G on X is a map
ϕ : G×X → X such that ϕ(e, x) = x and

(1.2) ϕ(gh, x) = ϕ(h, ϕ(g, x)),

for all x ∈ X and g, h ∈ G.
For left group actions, we typically write ϕ(g, x) =: g · x so (1.1) becomes

(gh) · x = g · (h · x).
For right group actions, we write ϕ(g, x) =: x · g, and (1.2) becomes

x · (gh) = (x · g) · h.
An action is called faithful if the only g ∈ G that acts trivially is the neutral

element:

ϕ(g, x) = x ∀x ∈ X =⇒ g = e.

For every x ∈ X, the set {ϕ(g, x) | g ∈ G} ⊂ X is called the orbit of x. The orbits
of X form a partition of X, with two elements x and y belonging to the same orbit
if and only if there is a g ∈ G such that g · x = y. If there is only one orbit (that
is, for every x and y in X there is a g ∈ G such that g · x = y) we call the action
transitive.

Example 1.13. The symmetric group SX acts on the set X by definition: for
x ∈ X and σ ∈ SX (that is, σ : X → X a bijection), we have σ·x := ϕ(σ, x) := σ(x).
This is a left action since the group operation on SX is the composition ◦ of maps,
and by convention σ ◦ σ′ means we first apply σ′, and then apply σ.

In fact, equipping a set X with a left action of a group G is equivalent to giving
a morphism G → SX . This morphism is an injection if and only the action is
faithful.

Example 1.14. Every group acts on itself from the left, by ϕ(g, h) := gh. This
action is faithful and transitive. In particular, it now follows from Example 1.13
that every (finite) group can be embedded into a (finite) symmetric group.
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Example 1.15. For any group G, we have another (left) action of G on itself,
namely by conjugation: ϕ(g, h) = ghg−1. The orbits of this group action are the
conjugacy classes.

1.4. Subgroups, normal subgroups, quotients. The notions of subgroup
and normal subgroup are central in any introductory course in group theory. They
will be less essential for us, as we will often just work with one fixed group.

Definition 1.16. A subgroup of a group (G, ·) is a subset H ⊆ G that is closed
under the group action. We write H ≤ G. For g ∈ G, we have the left coset
gH = {gh | h ∈ H}, and the right coset Hg = {hg | h ∈ H}. These can also be
seen as orbits of group actions, namely of the action ofH on G by right (respectively
left) multiplication.

If in addition gHg−1 = H (or more precisely h ∈ H, g ∈ G =⇒ ghg−1 ∈ H,
or in other words H is invariant under conjugation), then we say H is a normal
subgroup and write H ⊴ G. In this case the left and right cosets agree: gH = Hg
for every g ∈ G. The set of cosets is denoted by G/H and naturally inherits a
group structure from G via (gH) · (g′H) := gg′H. The group G/H is called the
quotient of G and H.

2. A crash course on multilinear algebra

Here we introduce some constructions in multilinear algebra, that will appear
all over the place during later lectures. You might have encountered some (or all)
of them in a linear algebra course or somewhere else in mathematics. We will work
over a fixed field k (which you can safely assume to be C). Almost all vector spaces
we encounter will be finite-dimensional (and even the infinite-dimensional ones will
usually come equipped with a basis).

2.1. Dual vector spaces. We briefly recall the notion of dual of a vector
space.

Definition 2.1. Given a vector space V , its dual V ∗ is the space Homk(V, k) of
all linear forms on V .

If V is an n-dimensional vector space, then V ∗ is also n-dimensional, but there
is no canonical way of identifying V with V ∗. Given a basis e1, . . . , en of V , we

can define the dual basis e∗1, . . . , e
∗
n by e∗i (ej) = δi,j :=

{
1 if i = j,

0 if i ̸= j.
Then ei 7→ e∗i

gives an isomorphism between V and V ∗, but it depends on the chosen basis.

Remark 2.2. If V is finite-dimensional, then there is a canonical identification
between V and (V ∗)∗, which is given by sending v ∈ V to the map evalv : V

∗ → k
that sends β ∈ V ∗ to β(v). We will in the future always identify (V ∗)∗ with V .

2.2. Tensor products. Given two vector spaces V and W , we can build a
new vector space V ⊗W out of them called the tensor product. There are (at least)
two ways to define the tensor product: we begin with the most down-to-earth one.

Definition 2.3. Let {ei}i∈I be a basis of V and {fj}j∈J be a basis of W . Then
V ⊗W is the vector space with basis {ei ⊗ fj}i∈I,j∈J . Moreover, for every v ∈ V
and w ∈ W , we have an element v ⊗ w ∈ V ⊗W defined as follows: if v =

∑
aiei

and w =
∑
bjfj , then v ⊗ w :=

∑
i,j(aibj)ei ⊗ fj .
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Even more explicitly, if V = kn andW = km, then V ⊗W is the space of n×m
matrices: ei ⊗ ej is the matrix Eij with a 1 on position (i, j) and 0’s everywhere
else, and more generally v ⊗ w is the product vwT (where we interpreted v and w
as column vectors).

It is important to realize that not every element of V ⊗W can be written in
the form v ⊗ w (but it can always be written as a linear combination

∑
i vi ⊗ wi,

in many different ways). If V = kn and W = km, the tensors of the form v⊗w are
precisely the rank one matrices. We will call tensors of the form v ⊗ w pure.

From the definition, one can deduce the following calculation rules:

(λv)⊗ w = v ⊗ (λw) = λ(v ⊗ w),(2.1)

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,(2.2)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.(2.3)

Remark 2.4. An alternative way of defining V ⊗W is as a quotient F (V ×W )/Z,
where F (V ×W ) is the free vector space on the set V ×W (which is the infinite-
dimensional vector space with basis {ev,w | v ∈ V,w ∈W}), and Z is the subspace
generated by the analogues of (2.1,2.2,2.3):

eλv,w − λev,w and ev,λw − λev,w,(2.4)

ev1+v2,w − ev1,w − ev2,w,(2.5)

ev,w1+w2 − ev,w1 − ev,w2 .(2.6)

The identification with our previous construction is given by sending the equivalence
class of ev,w to v ⊗ w.

Remark 2.5. * The tensor product V ⊗W comes equipped with a bilinear map

ϕV,W : V ×W → V ⊗W
(v, w) 7→ v ⊗ w.

The pair (V ⊗W,ϕV,W ) satisfies the following universal property: suppose U is any
other vector space and φ : V ×W → U any bilinear map. Then there is a unique
linear map ψ : V ⊗W → U such that φ = ψ ◦ ϕV,W , i.e. such that the following
diagram commutes:

V ×W V ⊗W

U

ϕV,W

φ
ψ

Put briefly: giving a bilinear map from a product of vector spaces is the same
as giving a linear map from their tensor product.

If (V ⊗̃W, ϕ̃V,W : V × W → V ⊗̃W ) were any other pair satisfying the same

universal property, one can verify that there is a (unique) isomorphism α : V ⊗W
∼=−→

V ⊗̃W such that ϕ̃V,W = α ◦ ϕV,W . Because of this, we can think of the universal
property as giving a definition of the tensor product.

Remark 2.6. Taking the tensor product is a functorial construction. That is
to say, if we have linear maps f : V → V ′ and g : W → W ′, they induce a
linear map f ⊗ g : V ⊗ W → V ′ ⊗ W ′. On pure tensors, f ⊗ g is given by
(f ⊗ g)(v ⊗ w) = f(v) ⊗ g(w). This has all nice properties you might expect, like
(f ⊗ g) ◦ (f ′ ⊗ g′) = (f ◦ f ′)⊗ (g ◦ g′).
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Exercise 2.7. Consider the linear maps f, g : C2 → C2 corresponding to the

matrices

(
a11 a12
a21 a22

)
and

(
b11 b12
b21 b22

)
(where we picked the standard basis {e1, e2}

of C2). Write down the matrix corresponding to the linear map f ⊗ g : C2 ⊗C2 →
C2 ⊗ C2 with respect to the basis e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2.

If V1, . . . , Vd are vector spaces we can define their tensor product V1 ⊗ · · · ⊗ Vd
by generalizing any of the definitions above:

Definition 2.8. Let {ej,i}i∈Ij be a basis of Vj . Then V1⊗· · ·⊗Vd is the vector space
with basis {e1,i1 ⊗ . . .⊗ ed,id}ij∈Ij . Moreover, for every (v1, . . . , vd) ∈ V1 × . . . , Vd,
we have an element v1⊗. . .⊗vd ∈ V1⊗. . .⊗Vd defined as follows: if vj =

∑
i aj,iej,i,

then v1 ⊗ . . .⊗ vd =
∑

(a1,i1 · · · ad,id)e1,i1 ⊗ . . .⊗ ed,id .

We again have the calculation rules:

v1 ⊗ . . .⊗ λvi ⊗ . . .⊗ vd =λ(v1 ⊗ . . .⊗ vi ⊗ . . .⊗ vd),(2.7)

v1 ⊗ . . .⊗ (vi + v′i)⊗ . . .⊗ vd =v1 ⊗ . . .⊗ vi ⊗ . . .⊗ vd
+ v1 ⊗ . . .⊗ v′i ⊗ . . .⊗ vd.

(2.8)

Remark 2.9. (This is just the analogue of Remark 2.4, there is probably no point
in reading this.) The tensor product V1⊗ · · ·⊗Vd can also be defined as a quotient
F (V1 × · · · × Vd)/ ∼, where F (V1 × · · · × Vd) is the free vector space on the set
V1 × · · · × Vd (which is the infinite-dimensional vector space with basis {ev1,...,vd |
vi ∈ Vi}), and ∼ is the subspace generated by the analogues of (2.7,2.8):

ev1,...,λvi,...,vd − λev1,...,vi,...,vd ,(2.9)

ev1,...,vi+v′i,...,vd − ev1,...,vi,...,vd − ev1,...,v′i,...,vd .(2.10)

The identification with our previous construction is given by sending the equivalence
class of ev1,...,vd to v1 ⊗ · · · ⊗ vd.

Remark 2.10. * The universal property from Remark 2.5 also holds, with the
bilinear map ϕV,W replaced by the multilinear (that is, linear in every argument)
map

ϕV1,...,Vd
: V1 × . . .× Vd → V1 ⊗ . . .⊗ Vd

(v1, . . . , vd) 7→ v1 ⊗ . . .⊗ vd.

The universal property then says that ϕV1,...,Vd
is the universal multilinear map

from V1× . . .×Vd. If you really want to you can spell out the details as an exercise.

Remark 2.11. Taking the tensor product is commutative, associative, and dis-
tributive. That means that we have natural isomorphisms

V ⊗W ∼=W ⊗ V
v ⊗ w 7→ w ⊗ v,

U ⊗ (V ⊗W ) ∼= U ⊗ V ⊗W ∼= (U ⊗ V )⊗W
u⊗ (v ⊗ w) 7→ u⊗ v ⊗ w 7→ (u⊗ v)⊗ w,

U ⊗ (V ⊕W ) ∼= (U ⊗ V )⊕ (U ⊗W )

u⊗ (v, w) 7→ (u⊗ v, u⊗ w).
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Remark 2.12. To avoid confusion about the symbols × and ⊕: for V andW vector
spaces, both V ×W and V ⊕W mean the same thing, namely the set {(v, w) | v ∈
V,w ∈ W}, which is naturally a vector space of dimension dimV + dimW . We
usually write V ×W when talking about bilinear maps, and V ⊕W in all other
cases.

We probably won’t encounter this, but just to point this out: when dealing
with infinite direct product and sums,×i∈I Vi is no longer the same as

⊕
i∈I Vi:

the former is the set of all tuples (vi)i∈I , the latter is the set of all such tuples for
which only finitely many vi are nonzero.

Example 2.13. We have a natural isomorphism

V ∗ ⊗W ∼= Homk(V,W )

β ⊗ w 7→
(

V→W
v 7→β(v)·w

)
,

where Homk(V,W ) denotes the space of linear maps from V to W .

Exercise 2.14. Let V be a finite-dimensional vector space.

(1) Construct a natural linear map V ∗ ⊗ V → k.
(2) Together with the isomorphism from Example 2.13, we get a linear map

Homk(V, V )→ k. This is known as the trace. Show that this is the same
as the trace you know from linear algebra.

2.3. Symmetric and exterior powers. In this section, we assume our field
k has characteristic 0. For any vector space V , one can consider the d-th tensor
power

V ⊗d = V ⊗ . . .⊗ V︸ ︷︷ ︸
d times

.

There is natural right action of Sd on V ⊗d defined by

(2.11) (v1 ⊗ · · · ⊗ vd) · σ = vσ(1) ⊗ · · · ⊗ vσ(d)
and linearly extending (that is: for w1, . . . , wm pure tensors, we have (w1 + . . . +
wm) · σ := w1 · σ + . . .+ wd · σ).

Exercise 2.15. Show that the action defined above is indeed a right action (and
not a left action).

The d’th symmetric power SdV and d’th exterior power
∧d

V can be defined
in two equivalent ways: either as a subspace of V ⊗d, or as a quotient of V ⊗d. We
will here take the subspace approach, with the quotient approach being a property.

Definition 2.16. The symmetric power SdV ⊂ V ⊗d is the subspace of all tensors
w ∈ V ⊗d that are invariant under the group action (2.11):

w ∈ SdV ⇐⇒ ∀σ ∈ Sd : w · σ = w.

The exterior power
∧d

V ⊂ V ⊗d is the subspace of all tensors w ∈ V ⊗d that are
anti-invariant under the group action (2.11):

w ∈
d∧
V ⇐⇒ ∀σ ∈ Sd : w · σ = sgn(σ)w.

Remark 2.17. In case d = 2 and dimV = n with a chosen basis, we can view V ⊗2

as the space of n× n matrices. Then S2V is the space of symmetric matrices and∧2
V is the space of skew-symmetric matrices.
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Remark 2.18. There are natural projection maps V ⊗d → SdV and V ⊗d →
∧d

V ,
given by the symmetrization map

V ⊗d ↠ SdV

v1 ⊗ . . .⊗ vd 7→ v1 • · · · • vd :=
1

d!

∑
σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d),
(2.12)

and the antisymmetrization map

V ⊗d ↠
d∧
V

v1 ⊗ . . .⊗ vd 7→ v1 ∧ · · · ∧ vd :=
1

d!

∑
σ∈Sd

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(d).
(2.13)

(The factors 1
d! are needed so that the compositions SdV ↪→ V ⊗d ↠ SdV and∧d

V ↪→ V ⊗d ↠
∧d

V are both the identity.)
The kernel K of the symmetrization map is given by

K =Span{v1 ⊗ . . .⊗ vd − vσ(1) ⊗ . . .⊗ vσ(d) | v1, . . . , vd ∈ V, σ ∈ Sd}
=Span{v1 ⊗ . . .⊗ vd − vσ(1) ⊗ . . .⊗ vσ(d) | v1, . . . , vd ∈ V, σ ∈ Sd a transposition}

hence we get an isomorphism SdV ∼= V ⊗d/K. In the literature, this is often taken
as the definition1 of SdV . Similarily, the kernel K ′ of the antisymmetrization map
is given by

K ′ =Span{v1 ⊗ . . .⊗ vd − sgn(σ)vσ(1) ⊗ . . .⊗ vσ(d) | v1, . . . , vd ∈ V, σ ∈ Sd}
=Span{v1 ⊗ . . .⊗ vd + vσ(1) ⊗ . . .⊗ vσ(d) | v1, . . . , vd ∈ V, σ ∈ Sd a transposition}
=Span{v1 ⊗ . . .⊗ vd | v1, . . . , vd ∈ V and 2 of the vi are equal},

and we get
∧d

V ∼= V ⊗d/K ′.

Remark 2.19. * The symmetric and exterior power satisfy a universal property:
we call a multilinear map β : V × . . .× V →W symmetric, if

β(vσ(1), . . . , vσ(d)) = β(v1, . . . , vd) ∀v1, . . . , vd ∈ V and σ ∈ Sd,

and alternating if

β(vσ(1), . . . , vσ(d)) = sgn(σ)β(v1, . . . , vd) ∀v1, . . . , vd ∈ V and σ ∈ Sd.

Note that β is alternating if and only if

β(v1, . . . , vd) = 0 when two of the vi are equal.

Then we have a symmetric multilinear map

ϕ : V × . . .× V → SdV

(v1, . . . , vd) 7→ v1 • . . . • vd
which is universal, in the sense that any other symmetric multilinear map φ :
V × . . .× V →W factors over ϕ: there is a unique linear map ψ : SdV →W such
that φ = ψ ◦ ϕ.

1When working over positive characteristic, this is in fact the correct definition.
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Similarily, we have an alternating multilinear map

ϕ : V × . . .× V →
d∧
V

(v1, . . . , vd) 7→ v1 ∧ . . . ∧ vd

which is universal, in the sense that any other alternating multilinear map φ :

V × . . .× V →W factors over ϕ: there is a unique linear map ψ :
∧d

V →W such
that φ = ψ ◦ ϕ.

If V is a finite-dimensional vector space with basis {e1, . . . , en}, then a basis of
SdV is given by

{ei1 • . . . • eid | 1 ≤ i1 ≤ . . . ≤ id ≤ n}.
In other words, SdV is the ring of homogeneous polynomials of degree d in the
variables e1, . . . , en. In particular we have dimSdV =

(
n+d−1

d

)
. Similarily, a basis

of
∧d

V is given by

{ei1 ∧ . . . ∧ eid | 1 ≤ i1 < . . . < id ≤ n}.

In particular we have dim
∧d

V =
(
n
d

)
. Note that

∧d
V = 0 when d > n := dimV .

Remark 2.20. Given a linear map f : V →W , it induces linear maps

Sdf : SdV → SdW

v1 • . . . • vd 7→ f(v1) • . . . • f(vd)
(2.14)

and

d∧
f :

d∧
V →

d∧
W

v1 ∧ . . . ∧ vd 7→ f(v1) ∧ . . . ∧ f(vd).
(2.15)

These are just restrictions of the map f⊗d from Remark 2.6.

Exercise 2.21. As an interesting special case, let dimV = n, take f : V → V ,
and consider

∧n
f :
∧n

V →
∧n

V . Since dim
∧n

V =
(
n
n

)
= 1, this map is given

by multiplication by a scalar. This scalar is known as the determinant of f . Show
that this is the same as the determinant you know from linear algebra.

Remark 2.22. Clearly we have SdV ∩
∧d

V = 0. In the case d = 2 we have an
equality

(2.16) V ⊗2 = S2V ⊕
2∧
V,

for instance because n2 =
(
n+1
2

)
+
(
n
2

)
. This is just the fact that every square matrix

is the sum of a symmetric matrix and a skew-symmetric matrix (in a unique way).
The obvious generalization of (2.16) is false: for d ≥ 3 (and n ≥ 2), the space

SdV ⊕
∧d

V is a strict subspace of V ⊗d. We will see the correct generalization of
(2.16) much later in the course, when dealing with Schur functors.

Proposition 2.23. * The symmetric power SdV is linearly spanned by the vectors
of the form vd := v ⊗ · · · ⊗ v.
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Proof. This follows from the polarization identity

(2.17) d! · v1 • · · · • vd =
∑
S⊆[d]

(−1)d−|S|
(∑
i∈S

vi

)d
.

In order to show (2.17), we expand the right hand side as a linear combination∑
i1≤...≤id

ai1...idvi1 • · · · • vid .

If some j doesn’t occur in {i1, . . . , id}, the coefficient ai1...id is zero, since for

every S ̸∋ j, the contribution of
(∑

i∈S vi
)d

cancels against the contribution of(∑
i∈S⊔j vi

)d
. So the only nonzero coefficient is a1...d; and we have a1...d = d! since(∑

i∈S vi
)d

does not have a summand vi1 • · · · • vid unless S = [d]. □



CHAPTER 2

Representation theory of finite groups

3. Introduction and first results

3.1. Fundamental definitions.

Definition 3.1. A representation of a group G is a vector space V (over a field k),
together with a left group action

G× V → V

(g, v) 7→ g · v(3.1)

which is linear, i.e. for all g ∈ G, λ, µ ∈ k, and v, w ∈ V :

(3.2) g · (λv + µw) = λ(g · v) + µ(g · v).
The condition (3.2) means that for every g ∈ G, the induced bijection V → V :

v 7→ g · v is a linear map, hence an element of GL(V ). So we can restate the above
definition as follows:

Definition 3.2. A representation (V, ρ) of a group G is a homomorphism of groups
ρ : G→ GL(V ), where V is a vector space over some field k.

To state this once more explicitly: given a representation “ · ” : G × V → V
according to Definition 3.1, we can construct a map ρ : G → GL(V ) by putting
ρ(g)(v) := g · v. This ρ is a morphism of groups since “ · ” is a group action,
and hence we have a representation according to Definition 3.2. Conversely, given
a representation ρ : G → GL(V ) according to Definition 3.2, one verifies that
g · v := ρ(g)(v) defines a linear group action, and hence we get a representation
according to Definition 3.1.

In the future, we will typically just write “V is a representation of G” and leave
the extra data (given by (3.1) or equivalently by the morphism ρ) implicit.

Definition 3.3. A morphism of G-representations (V, ρV ) and (W,ρW ), also called
G-linear map, is a linear map φ : V →W that is compatible with the group action:
φ(g · v) = g · φ(v):

V W

V W

φ

ρV (g) ρW (g)

φ

We will denote the vector space of G-linear maps from V to W by HomG(V,W ).

Definition 3.4. For every group G, we have the zero representation V = 0, and
the trivial representation V = k, with group action given by g · v = v.

Examples 3.5. • As a “0-th example”, note that if G is the trivial group,
then representations of G are just vector spaces, and morphisms of repre-
sentations are linear maps.

19
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• The dihedral group D2n acts on R2 by construction; this gives a 2-
dimensional representation of D2n (over the real numbers).

• The symmetric group Sd has a one-dimensional representation given by
the signum: V = C, and the action is given by σ · v = sgn(σ)v. This is
known as the alternating representation or sign representation.

Convention 3.6. From now on, all representations we work with will be finite-
dimensional representations over C (unless explicitly stated otherwise).

Remark 3.7. * In order to be able to give geometrically motivated examples
like the second one in Examples 3.5, the following remark is in order: every (n-
dimensional) real representation naturally gives a (n-dimensional) complex repre-
sentation. If you don’t mind choosing coordinates, the easiest way to think about
this is to view the real representation as a map G → GL(n,R). The associated
complex representation is then given by embedding GL(n,R) into GL(n,C) (every
real matrix is in particular a complex matrix). If you do mind choosing coordinates:
what we are really doing here is noting that a linear action on a real vector space
V gives a linear action on the complex vector space V ⊗R C. The same works for
any field extension.

Definition 3.8. A subrepresentation of a G-representation V is a linear subspace
W of V that is invariant under the action of G (i.e. g · w ∈ W for all g ∈ G and
w ∈ W ). This restricted action makes W into a G-representation as well, and the
inclusion W ↪→ V is a morphism of representations.

Exercise 3.9. If φ : V → W is a morphism of G-representations, then imφ is a
subrepresentation of W , and kerφ is a subrepresentation of V .

Definition 3.10. The direct sum of 2 G-representations V and W is the vector
space V ⊕W , with the group action given by g · (v, w) := (g · v, g ·w). In this case
V and W are naturally subrepresentations of V ⊕W .

Remark 3.11. For vector spaces V1, . . . , Vk, W1, . . . ,Wℓ, we have a natural iso-
morphism1

HomC(
⊕
i

Vi,
⊕
j

Wj) ∼=
⊕
i,j

HomC(Vi,Wj).

This isomorphism preserves compatibility with a group action. Hence for V1, . . . , Vk,
W1, . . . ,Wℓ representations of G, we have

HomG(
⊕
i

Vi,
⊕
j

Wj) ∼=
⊕
i,j

HomG(Vi,Wj).

Definition 3.12. For any representation V , we define the fixed point set

V G := {v ∈ V | g · v = v ∀g ∈ G}.
This is a subrepresentation of V , and we have V G ∼= C⊕d as G-representations,
where d := dimV G (and C denotes the trivial representation). Conversely, we have
v ∈ V G if and only if ⟨v⟩ ⊆ V is a subrepresentation isomorphic to the trivial
representation.

Definition 3.13. A G-representation V is irreducible if the only subrepresentations
are 0 and V .

1This is basically the universal property of the direct sum.
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Irreducible representations (sometimes abbreviated to “irreps”) can be thought
of as the “basic building blocks” of every representation. One of our main goals of
this chapter is for a given finite group, to classify all irreducible representations.

3.2. Constructions. We introduce several important constructions which con-
struct new representations out of old ones; and in addition introduce the notion of
permutation representation associated to a group action.

Definition 3.14. The tensor product of 2 G-representations is the vector space
V ⊗W , with the group action given by g · (v ⊗ w) := g · v ⊗ g · w.

Remark 3.15. In particular, V ⊗n is a G-representation. One verifies that SnV
and

∧n
V are subrepresentations.

Definition 3.16. The dual V ∗ of a G-representation V is again a G-representation,
via the rule g · β(v) := β(g−1 · v) (for g ∈ G, β ∈ V ∗, and v ∈ V ).

Exercise 3.17. (See also Exercise 1 on Sheet 1.) If you are not surprised by the
appearance of “g−1” above, you can probably skip this.

• Verify that this is indeed a G-representation. Where does your proof fail
if we had put g instead of g−1?

• Verify that for g ∈ G, v ∈ V and β ∈ V ∗ we have ⟨g · β, g · v⟩ = ⟨β, v⟩.
(Where ⟨β, v⟩ is just evaluating the map β at the vector v.)

• Let V = Cn, so we can view our representation as a map G→ GL(n,C).
What is then the dual representation (as a map G→ GL(n,C))?

Definition 3.18. Given two G-representations V,W , the space Homk(V,W ) be-
comes a G-representation via Homk(V,W ) ∼= V ∗ ⊗W .

Exercise 3.19. (See also Exercise 1 on Sheet 1.) Convince yourself of the following:

• For φ ∈ Homk(V,W ), the map g · φ is given by (g · φ)(v) = g · φ(g−1 · v).
Note that in the case W = C is the trivial representation, we recover the
definition of the group action on V ∗.

• HomG(V,W ) = Homk(V,W )G. In words: the subspace HomG(V,W ) ⊂
Homk(V,W ) is a G-subrepresentation, consisting of all elements φ ∈
Homk(V,W ) that are fixed under the action of G we just defined.

Definition 3.20. • Suppose X is a finite set and G acts on X from the
left. We can make the free vector space on X (which is just the vector
space with basis {ex : x ∈ X}) into a representation via g · ex = eg·x and
extending linearly. This is called a permutation representation.

• In the special case where X = G and the action is by left multiplication,
the representation described above is known as the regular representation
of G, and is denoted by RG.

Example 3.21. S3 naturally acts on the set [3] = {1, 2, 3}. This gives rise to a
linear action of S3 on C3, permuting the basis vectors. Note that this permutation
representation is not irreducible. Indeed: the vector e1 + e2 + e3 is invariant under
the group action and hence spans a (trivial) one-dimensional subrepresentation.

Exercise 3.22. Prove that the following two representations are isomorphic to RG
(and hence each give an alternative definition of the regular representation):

• The space Map(G,C) of maps G → C, with the group action given by
(g · α)(h) := α(g−1h) (for α ∈ Map(G,C)).
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• Same as above, but with group action given by (g · α)(h) := α(hg).

Exercise 3.23. (Exercise 3 on Sheet 1) Let ρ : G→ GL(V ) be a representation of
a finite group. Prove that every matrix ρ(g) ∈ GL(V ) is diagonalizable.

3.3. Schur’s lemma and complete reducibility. In this section we prove
two first results on representations of finite groups: Schur’s lemma, and complete
reducibility (also known as Maschke’s theorem). Together, they tell us that in order
to understand the representation theory of a finite group, it suffices to describe its
irreducible representations.

We begin with Schur’s lemma, which tells us that morphisms between irre-
ducible representations are easy to describe.

Theorem 3.24 (Schur’s lemma). Let G be any group.

(1) If φ : V → W is a morphism of irreps, then either φ = 0 or φ is an
isomorphism.

(2) For V an irrep, HomG(V, V ) = {λ · id | λ ∈ C}.
Proof. (1) This follows from the fact that for φ : V → W a morphism

of representations, ker(φ) ⊆ V and im(φ) ⊆ W are subrepresentations.
Precisely: let φ ̸= 0. Then ker(φ) ⊊ V , so (since V irreducible) ker(φ) =
0; and 0 ̸= im(φ) ⊆ W , so (since W irreducible) im(φ) = W . But this
means that φ is an isomorphism.

(2) Let φ ∈ HomG(V, V ), and let λ ∈ C be an eigenvalue2 of the linear map
φ. Then φ − λ · id has nonzero kernel, so by (1) φ − λ · id = 0, hence
φ = λ · id.

□

Exercise 3.25. Deduce that for V and W irreps,

dimHomG(V,W ) =

{
1 if V ∼=W (as G-representations),

0 else.

The next theorem, complete reducibility for complex representations of finite
groups, is one of the central results of this chapter. In contrast to Schur’s lemma, a
version of which can be expected whenever one has a notion of “irreducible object”,
complete reducibility really makes us of our assumptions that G is a finite group,
and that the field we work in has characteristic zero3.

Theorem 3.26 (Complete reducibility). Let G be a finite group, V a represen-
tation, and W ⊂ V a subrepresentation. Then there is another subrepresentation
W ′ ⊂ V such that V =W ⊕W ′.

First proof. LetH0 be any positive-definite Hermitian form on V , and define

H(v, w) =
∑
g∈G

H0(gv, gw).

Note that H is G-equivariant: H(gv, gw) = H(v, w) for all v, w ∈ V and g ∈ G.
Take W ′ = W⊥ := {v ∈ V | H(v, w) = 0 ∀w ∈ W} the orthogonal complement
with respect to this Hermitian form. Then V =W ⊕W ′, and W ′ is G-invariant by
the equivariance of H. □

2We are here using that C is an algebraically closed field.
3In fact, our second proof can be generalized to the case where char(k) does not divide |G|.

But if char(k) does divide |G| then complete reducibility fails.
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Second proof. Take any projection map π0 : V →W (i.e. pick a vector space
complement U of W in V , and let π0 : V ∼= U ⊕W →W ). Define

π(v) =
∑
g∈G

g · π0(g−1 · v),

then one verifies that π(w) = |G| ·w for w ∈W , and that π(h · v) = h · π(v) for all
h ∈ G and v ∈ V . Hence π : V →W is a surjective morphism of G-representations.
Then W ′ := ker(π) ⊂ V is a subrepresentation, and V =W ⊕W ′. □

Exercise 3.27. In Example 3.21, we found a subrepresentation C ∼= ⟨e1+e2+e3⟩ =:
W of the permutation representation C3 =: V of S3. So by complete reducibility,
there exists a complementary subrepresentation W ′ ⊂ V . Find this W ′. Is it
irreducible?

We can reformulate the theorem as follows:

Corollary 3.28 (Maschke’s theorem). Every representation of a finite group is a
direct sum of irreducible representations.

Exercise 3.29. Deduce Corollary 3.28 from Theorem 3.26.

Remark 3.30. * For the people taking the course on associative algebras, here is
one more reformulation of Theorem 3.26: The group algebra C[G] of a finite group
G is a semisimple algebra.

Exercise 3.31. (Exercise 4 on Sheet 1.) This exercise shows that without the
assumption that G is finite, Maschke’s theorem fails: let G = Z and consider the

2-dimensional representation Z → GL(2,C) : a 7→
(
1 a
0 1

)
. Convince yourself

that this is actually a representation, then find a subrepresentation that has no
complement.

Remark 3.32. * Let C be either the category of finite groups, or the category of
finite-dimensional representations of a fixed finite group G over a fixed field k, or the
category of finite-dimensional A-modules of a fixed finite-dimensional k-algebra A.
In each of these situations, we have a notion of “irreducible object”. Moreover, one
can break each object X into its irreducible parts by writing down a composition
series4. These irreducible parts are known as the composition factors5 of X.

The natural question of trying to classify all objects in our category now splits
into two subquestions:

(1) What are the basic building blocks (irreducible objects)?
(2) The extension problem: Given two objects Y and Z, in which ways can

I put them together to an object X? (I.e. find all X such that Y ↪→ X
with Z ∼= X/Y , this is known as an extension of Z by Y .)

We always have a trivial way of putting Y and Z together: namely to the direct
sum Y ⊕ Z. Maschke’s theorem now can be rephrased as follows:

4Or more intuitively: if X has a subobject Y we can imagine that X splits into Y and X/Y .

We can then split up Y and X/Y in a similar fashion and keep repeating until we are left with a
list of irreducible objects.

5The fact that the composition factors of X are uniquely determined is known as the Jordan-
Holder theorem. In our setting this is an immediate corollary of Corollary 3.34, but it also holds

is more general settings where we don’t have complete reducibility.



24 2. REPRESENTATION THEORY OF FINITE GROUPS

For representations of a finite group over C, the question (2)
above is trivial: the only extension of Z by Y is the direct sum
Y ⊕ Z.

Convention 3.33. From now on, we will always assume that our given group G
is finite, unless explicitly stated otherwise.

Together, Schur’s lemma and Maschke’s theorem tell us that if we understand
the irreducible representations of a finite group G, we can describe all its repre-
sentations, and even the space of morphisms between two representations. More
precisely, we have the following:

Corollary 3.34. Let V be a representation of a finite group G.

(1) There is a decomposition

(3.3) V ∼= V ⊕a11 ⊕ · · · ⊕ V ⊕akk

into irreducible representations (where Vi ≇ Vj if i ̸= j).
(2) The occurring irreps Vi and their multiplicities ai are uniquely determined.
(3) The subrepresentations V ⊕aii ⊂ V (called isotypic components) are also

uniquely determined.
(4) Let W be another representation, and

(3.4) W ∼= V ⊕b11 ⊕ · · · ⊕ V ⊕bkk

be its decomposition into irreducibles6. Then we have isomorphisms

HomG(V,W ) ∼=
⊕
i

HomG(V
⊕ai
i , V ⊕bii )(3.5)

∼=
⊕
i

Mat(ai × bi,C).(3.6)

Proof. (1) is just a reformulation of Maschke’s theorem. We next prove (4):
by Remark 3.11, we have

HomG(V,W ) ∼=
⊕
i,j

HomG(V
⊕ai
i , V

⊕bj
j )

and we can write

HomG(V
⊕ai
i , V

⊕bj
j ) ∼= HomG(Vi, Vj)

⊕aibj ∼=

{
0 if i ̸= j

Mat(ai × bi,C) if i = j

by Remark 3.11 and Schur’s lemma.
For (2), note that in (3.5) the left hand side is an isomorphism if and only if

every summand on the right hand side is an isomorphism, which can only happen
if ai = bi for every i. Applying this to the identity map on V yields the desired
uniqueness.

For (3), what we have to show is that if we have two isomorphisms

V
φ,ψ−−→∼= V ⊕a11 ⊕ · · · ⊕ V ⊕akk

then their composition φ ◦ ψ−1 maps every summand V ⊕aii to itself. This follows
immediately from (3.5). □

6We can without loss of generality assume that the irreps appearing in (3.3) are the same as
the irreps appearing in (3.4), by having some ai and bi equal to 0.
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Remark 3.35. The decomposition of V ⊕aii into irreducible subrepresentations is
not unique. Consider for instance G the trivial group, whose only irrep is C. Then
decomposing a vector space V as a direct sum of copies of C amounts to choosing
a basis (up to scaling of the basis vectors), which is of course not unique.

3.4. Representation theory of abelian groups.

Proposition 3.36. Let V be an irreducible representation of an abelian group G.
Then V is one-dimensional.

Proof. The key point is that since G is abelian, it follows that for every g ∈ G
the linear map φg : V → V given by φg(v) = g · v is a morphism of representations.
So by Schur’s lemma g · v is a scalar multiple of v, for every g ∈ G and v ∈ V . But
if we now fix a v ∈ V , this means that the one-dimensional subspace spanned by v
is a subrepresentation, which is equal to all of V since V is irreducible. □

In other words, irreps of an abelian group G are given by elements of the dual
group Hom(G,C∗).

Exercise 3.37. (Exercise 5 on Sheet 1.) Show that for a finite abelian group G,
there is an isomorphism G ∼= Hom(G,C∗) of groups. (Hint: by the classification of
finite abelian groups, G is a product of cyclic groups.) Conclude that the number
of nonisomorphic irreps of G is equal to |G|.

Remark 3.38. An alternative proof of Proposition 3.36 can be obtained by com-
bining Exercise 3.23 with the linear algebra fact that commuting diagonalizable
matrices are simultaneously diagonalizable.

4. Character theory

Character theory is a remarkably effective tool for understanding the repre-
sentations of a given finite group G. In this section we define an invariant for
representations of finite groups, known as the character. The main points are the
following:

• The character of a representation is easy to compute.
• Every representation is uniquely determined by its character (Corollary 4.13).
• Once we know the characters of all the irreps of G, we can read the de-
composition of any representation into irreps off from its character (Corol-
lary 4.14).

Another important result that follows from character theory is Theorem 4.18, which
states that the number of irreps of G is equal to the number of conjugacy classes.

4.1. Characters.

Definition 4.1. Let ρ : G → GL(V ) be a representation. The character of G
is the map χV : G → C sending a group element g to the trace tr(ρ(g)) of the
corresponding matrix.

Remark 4.2. (1) Since ρ(e) is the identity matrix, we have χV (e) = dimV .
(2) For g, h ∈ G, we have χV (h

−1gh) = χV (g), i.e. χG is constant on conju-
gacy classes. We call such a function α : G → C satisfying α(h−1gh) =
α(g) a class function. The set Cclass(G) of all class functions on G is
a C-vector space, whose dimension is equal to the number of conjugacy
classes of G.
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Exercise 4.3. α : G → C is a class function if and only if α(gh) = α(hg) for all
g, h ∈ G.

Proposition 4.4. For V and W representations of G, we have:

χV⊕W = χV + χW ,(4.1)

χV⊗W = χV · χW ,(4.2)

χV ∗ = χV ,(4.3)

χS2V (g) =
χV (g)

2 + χV (g
2)

2
,(4.4)

χ∧2 V (g) =
χV (g)

2 − χV (g2)
2

(4.5)

Proof. Fix g ∈ G, and let {λi} and {µj} be the eigenvalues of ρV (g) and
ρW (g), respectively. The matrix ρV⊕W (g) has eigenvalues {λi} ∪ {µj}, from which
the first formula follows. Similarily, ρV⊗W (g) has eigenvalues {λiµj}, so its trace
equals

∑
i,j λiµj = (

∑
i λi)(

∑
j µj) = χV (g) · χW (g).

For the third claim, note that since ρV (g) is a matrix of finite order, all its
eigenvalues have norm one. So the eigenvalues of ρV ∗(g) = (ρV (g)

−1)T are λ−1i =

λi, hence the third formula follows.
The final two claims are similar; we prove only the first one and leave the second

one as an exercise. The eigenvalues of ρS2V (g) are given by {λiλj | i ≤ j}. So

χS2V (g) =
∑
i≤j

λiλj =
(
∑
i λi)

2 +
∑
i λ

2
i

2
=
χV (g)

2 + χV (g
2)

2
.

□

Exercise 4.5. Consider the symmetric group S3. There are three conjugacy
classes, with representatives e, (12), (123), so the character of a representation V
is determined by the three numbers χV (e), χV ((12)), χV ((123)). We have already
seen three irreducible representations of S3:

• The trivial representation Vtriv.
• The alternating representation Valt (see Examples 3.5).
• The two-dimensional subrepresentation

Vstand := {(x1, x2, x3) ∈ C3 | x1 + x2 + x3 = 0} ⊂ C3

of the permutation representation C3, see Exercise 3.27. This is known as
the standard representation.

For each of these representations, determine the character.

Exercise 4.6. (Exercise 2a on Sheet 2.) Let G be a finite group acting on a finite
set X, and let V be the permutation representation. Then χV (g) is the number of
elements of X fixed by the action of g.

As mentioned before, one of our main results will be that a representation is
uniquely determined by its character. The following exercise can already give some
intuition why this might be true.

Exercise 4.7. (Exercise 5 on Sheet 2.) Show that if we know the character χ of a
representation ρ : G → GL(V ), then we know the coefficients of the characteristic
polynomial of each element ρ(g), and hence the eigenvalues of each ρ(g). Carry this
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out explicitly for elements g ∈ G of orders 2, 3, and 4, and for a representation of
G on a vector space of dimension 2, 3, or 4.

4.2. The first projection formula. Let V be a representation of a finite
group G. Let us try to deduce some information about V , knowing only its char-
acter. Recall that V G := {v ∈ V | g · v = v ∀g ∈ G} the set of vectors fixed by
the action of G.

Remark 4.8. If we decompose V into isotypic components, V G is precisely the
isotypic component corresponding to the trivial representation.

Proposition 4.9 (First projection formula). The linear map

φ : V → V

v 7→ 1

|G|
∑
g∈G

g · v

is a projection of V onto V G, and moreover G-linear.

Proof. One verifies that (for h ∈ G and v ∈ V ):

(1) φ(h · v) = φ(v),
(2) h · φ(v) = φ(v),
(3) v ∈ V G implies that φ(v) = v.

Here is the proof of (2), the other two are left as an exercise:

h · φ(v) = h · ( 1

|G|
∑
g∈G

g · v) = 1

|G|
∑
g∈G

hg · v =
1

|G|
∑
g′∈G

g′ · v = φ(v).

Now (1) and (2) imply that φ is G-linear. Moreover (2) means the image of φ is
contained in V G; together with (3) that means that it is a projection onto V G. □

Corollary 4.10. The dimension of V G can be computed as

dimV G =
1

|G|
∑
g∈G

χV (g)

Proof. For any projection of a vector space onto a subspace, the dimension
of the image is equal to the trace of the projection. So

dimV G = trφ = tr(
1

|G|
∑
g∈G

ρV (g)) =
1

|G|
∑
g∈G

χV (g). □

In particular, the multiplicity of the trivial representation in the decomposition
of V is uniquely determined by its character. If we can prove the same thing for
the multiplicity of every irrep inside V , we will have achieved our goal of showing
that a representation is uniquely determined by its character.

The trick is to apply Corollary 4.10 to the representation Hom(V,W ), leading
to the following powerful result:

Theorem 4.11. Define a (positive-definite) Hermitian product on Cclass(G) by

⟨α, β⟩ = 1

|G|
∑
g∈G

α(g)β(g).

Then the characters of the irreps of G are orthonormal with respect to this Hermit-
ian product.
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Proof. Let V and W be irreps and consider the representation Hom(V,W ).
By Exercise 3.19, the fixed point set Hom(V,W )G is equal to the space HomG(V,W )
of homomorphisms ofG-representations. But by Schur’s lemma (Exercise 3.25), this
space is 1-dimensional if V and W are isomorphic, and 0-dimensional if they are
not. On the other hand, the representation Hom(V,W ) ∼= V ∗ ⊗W has character

χHom(V,W )(g) = χV (g) · χW (g). So applying Proposition 4.9 gives the formula

1

|G|
∑
g∈G

χV (g) · χW (g) = dimHomG(V,W ) =

{
1 if V ∼=W,

0 if V ≇W.

This is exactly what we needed to prove. □

We immediately obtain several interesting consequences from this theorem:

Corollary 4.12. The number of nonisomorphic irreps of G is at most the number
of conjugacy classes in G.

Proof. Orthonormal vectors are in particular linearly independent, and the
dimension of Cclass(G) is equal to the number of conjugacy classes in G. □

In particular, there are only finitely many nonisomorphic irreps. So from now
on, whenever we decompose V ∼= V ⊕a11 ⊕ · · · ⊕ V ⊕akk into irreps, we can assume
that the sum runs over a complete set of nonisomorphic irreps (with some of the ai
being 0).

Corollary 4.13. Any representation is uniquely determined by its character.

Proof. We can write V ∼= V ⊕a11 ⊕· · ·⊕V ⊕akk , where the Vi are nonisomorphic
irreps. Then χV =

∑
i aiχVi

, and since the χVi
are linearly independent, the ai are

uniquely determined by χV . □

Corollary 4.14. Let V ∼= V ⊕a11 ⊕ · · · ⊕ V ⊕akk be any representation (where again
Vi are nonisomorphic irreps).

(1) The multiplicity ai of Vi in V is equal to the product ⟨χV , χVi
⟩.

(2) We have ⟨χV , χV ⟩ =
∑
i a

2
i .

Proof. Follows immediately from Theorem 4.11. □

Applying Theorem 4.11 to the regular representation we obtain the following:

Corollary 4.15. The decomposition of RG into irreps is given by

RG =
⊕
i

V ⊕ dimVi
i

where the sum is over all irreps of G.

Proof. By Exercise 4.6, the character of RG is given by

χRG
(g) =

{
|G| if g = e,

0 else.

So writing RG =
⊕

i V
⊕ai
i (the sum being over a complete set of nonisomorphic

irreps), by Corollary 4.14 we have

ai = ⟨χRG
, χVi
⟩ = 1

|G|
· |G| · χVi

(e) = dimVi.

□
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Since in particular all irreps appear in G, we now have a procedure of construct-
ing all irreps of a given group: just take its regular representation and decompose
it into irreducibles.

Remark 4.16. From Corollary 4.15 we see

(4.6) |G| = dimRG =
∑
i

(dimVi)
2.

Also, evaluating the formula χRG
=
∑
i (dimVi) · χVi at g ̸= e yields

(4.7)
∑
i

(dimVi) · χVi
(g) = 0 for any g ̸= e.

In the next section we will prove that the number of irreps of G is equal to the
number of conjugacy classes. Assuming this for a moment, the formulas (4.6) and
(4.7) allow us to compute the character of the final irrep of G, assuming we already
know the characters of all other irreps.

4.3. Number of irreps; character tables. We have shown that the number
of irreps of G is at most the number of conjugacy classes (Corollary 4.12). To show
that this in fact an equality is equivalent to showing that the characters χVi don’t
just form a linearly independent subset, but in fact a basis of Cclass(G). Before we
can prove this we need the following lemma, which gives a characterization of class
functions:

Lemma 4.17. Let α : G → C be any function. Then α is a class function if and
only if for every representation V , the linear map

φα,V : V → V(4.8)

v 7→
∑
g∈G

α(g)(g · v)

is a morphism of representations.

Proof. Suppose α is a class function, then for any h ∈ G and v ∈ V :

φα,V (h · v) =
∑
g

α(g)(gh · v)

= h ·
∑
g

α(g)(h−1gh · v)

= h ·
∑
g

α(h−1gh)(h−1gh · v) since α is a class function,

= h ·
∑
g′

α(g′)(g′ · v)

= h · φα,V (v),

i.e. φα,V is G-linear.
On the other hand, suppose that for every V , we have that φα,V is G-linear.

Then this is true in particular for V = RG the regular representation. In this case
we have φα,V (ea) =

∑
g∈G α(g)(ega). Then G-linearity says that

h · φα,V (ea) =
∑
g∈G

α(g)ehga =
∑
g′∈G

α(h−1g′a−1)eg′
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is equal to

φα,V (eha) =
∑
g∈G

α(g)egha =
∑
g′∈G

α(g′a−1h−1)eg′ .

Comparing coefficients yields that α(h−1g′a−1) = α(g′a−1h−1) for every a, g′, h ∈
G. This is easily seen to be equivalent to α being a class function (cfr. Exercise 4.3).

□

Theorem 4.18. The characters of the irreps of a finite group G form an or-
thonormal basis of Cclass(G). In particular, the number of irreps equals the number
of conjugacy classes of G.

Proof. Linear independence follows from Theorem 4.11. Now take α ∈ Cclass(G)
with ⟨χVi

, α⟩ = 0 for all irreps Vi. We need to show that then α = 0.
By Lemma 4.17, φα,Vi

is G-linear for every i, and by Schur’s lemma, φα,Vi
=

λi · idVi
for some λi ∈ C. But

λi =
tr(φα,Vi

)

dimVi
=

∑
g α(g)χVi

(g)

dimVi
=
|G| · ⟨χV ∗

i
, α⟩

dimVi
= 0.

So φα,Vi = 0 for every irrep Vi, and hence φα,V = 0 for any representation V .
Taking V = RG the regular representation and evaluating at g = e yields

0 = φα,RG
(e) =

∑
g∈G

α(g)eg.

But this means α(g) = 0 for every g ∈ G, i.e. α = 0. □

Exercise 4.19. Let Vi be an irrep of G, and consider the class function given by

α(g) =
dimVi
|G|

χVi(g).

Then for any representation V , the map φα,V (4.8) is the projection of V onto the
isotypic component corresponding to Vi. Note that the case where Vi is the trivial
representation was already done in the proof of Proposition 4.9.

Remark 4.20. The characters of the irreps of a given group G are traditionally
presented in the form of a character table, whose rows are labeled by the irreps
and columns labeled by the conjugacy classes. By Theorem 4.11, the rows of the
character table are orthonormal (with respect to the inner product defined there),
and by Theorem 4.18 the number of rows equals the number of columns.

Example 4.21. In Exercise 4.5 we computed the characters of three irreps of S3.
Since S3 has only three conjugacy classes, we now know (by Corollary 4.12) these
are all the irreps; i.e. we know the character table:

e (12) (123)

Vtriv 1 1 1
Valt 1 -1 1
Vstand 2 0 -1

Since #[e] = 1, #[(12)] = 3, and #[(123)] = 2 (where [g] denotes the conjugacy
class of g), the Hermitian inner product ⟨ , ⟩ of two rows (a1, a2, a3) and (b1, b2, b3)
is given by 1

6 (a1b1 + 3a2b2 + 2a3b3). Note that the rows of the character table are
indeed orthonormal with respect to this inner product.
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Exercise 4.22. The formulas (4.6) and (4.7) can be generalized to the following
orthogonality relations between the columns of the character table: for every g ∈ G
we have

(4.9)
∑
Vi

χVi
(g)χVi

(g) =
|G|
c(g)

,

where c(g) is the number of elements in the conjugacy class of g.
For g, h ∈ G not conjugate, we have

(4.10)
∑
Vi

χVi(g)χVi(h) = 0.

Hint. Rescale the elements of the character table so it becomes an orthonormal
matrix, and use that the rows of a matrix are orthonormal if and only if the columns
are.

5. Associative algebras

We collect here some definitions and basic facts about associative algebras that
we will need in the future.

5.1. Algebras and modules.

Definition 5.1. Let k be a field. A unital associative k-algebra is a vector space
A equipped with a product · : A×A→ A, such that:

(1) · : A×A→ A is a bilinear map,
(2) (a · b) · c = a · (b · c) for all a, b, c ∈ A (associativity),
(3) there exists7 an e ∈ A such that e · a = a · e = a for all a ∈ A (unitality).

Note that an associative algebra is in particular a (not necessarily commutative)
ring (if we forget the vector space structure).

Definition 5.2. A left A-module is a vector spaceM equipped with a bilinear map
A×M →M : (a,m) 7→ a ·m such that

(1) e ·m = m for all m ∈M .
(2) (a · b) ·m = a · (b ·m) for all a, b ∈ A, m ∈M .

Similarly, a right A-module is a vector space M equipped with a bilinear map
M ×A→M : (m, a) 7→ m · a such that

(1) m · e = m for all m ∈M .
(2) m · (a · b) = (m · a) · b for all a, b ∈ A, m ∈M .

You can convince yourself that this agrees with the usual definition of module over
a ring.

For the remainder of this subsection we will only work with left modules, but
everything works the same for right modules.

Definition 5.3. A morphism of left A-modules is a linear map f : M → N such
that f(am) = af(m) for all a ∈ A,m ∈ M . A left submodule M ⊆ N is a vector
subspace M of a left A-module M such that am ∈M for all a ∈ A and m ∈M . A
left A-module N is called irreducible if the only submodules are 0 and N .

7Such an e is automatically unique
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Remark 5.4. For every algebra A, the vector space A is naturally a left A-module,
called the regular left A-module. A left ideal in A is a left submodule of the regular
left A-module.

Definition 5.5. The direct sum M ⊕N of two left A-modules is the vector space
M ⊕ N with the obvious action a · (m,n) = (am, an). A left A-module M is
indecomposable ifM =M1⊕M2 (withM1 andM2 both A-modules) impliesM1 = 0
or M2 = 0. Note that irreducible modules are automatically indecomposable (but
the other implication does not hold in general).

5.2. Idempotents.

Definition 5.6. An element e of an algebra A is called idempotent if e2 = e. Two
idempotents e1 and e2 are orthogonal if e1e2 = e2e1 = 0. An idempotent e is
primitive if it cannot be written as e = e1 + e2 with e1 and e2 nonzero orthogonal
idempotents.

Lemma 5.7. Let e ∈ A be an idempotent and consider the left ideal Ae := {ae |
a ∈ A}. Then there is a one-to-one correspondence between:

(1) Decompositions e = e1 + e2 of e as a sum of orthogonal idempotents.
(2) Decompositions Ae = I1 ⊕ I2 as a direct sum of left submodules of Ae.

In particular, e is primitive if and only if the left ideal Ae := {ae | a ∈ A} is an
indecomposable left A-module.

Proof. Suppose e = e1 + e2 with e1, e2 orthogonal idempotents. Then define
I1 = Ae1 and I2 = Ae2. We verify that Ae = Ae1 ⊕Ae2:

• If c ∈ Ae1 ∩Ae2 then c = ae1 = be2, and right multiplying with e1 yields
c = 0.

• Ae ⊆ Ae1 +Ae2 since e = e1 + e2, and Aei ⊆ Ae since ei = eie.

Conversely, suppose Ae is not indecomposable: Ae = I1 ⊕ I2 with I1, I2 ⊂ Ae
nonzero left ideals. There are unique e1 ∈ I1 and e2 ∈ I2 such that e = e1 + e2,
and e1, e2 ̸= 0. Since e1 ∈ Ae we can write e1 = ae. Right multiplying with e gives
e1e = ae2 = ae = e1. This can be rewritten as e1 − e21 = e1e2. Note that the left
hand side is in I1 and the right hand side is in I2. So since I1 ∩ I2 = 0 we get
e1 = e21 and e1e2 = 0. Similarly we get e2 = e22 and e2e1 = 0. So e1 and e2 are
orthogonal idempotents.

We still need to verify that the above procedures are inverse to one another.
On the one hand, if we start with a decomposition e = e1 + e2 then indeed e1 and
e2 are the unique elements in Ae1 and Ae2 such that e = e1 + e2. On the other
hand, if we start with a decomposition Ae = I1 ⊕ I2 and define e1 and e2 by the
equality e = e1 + e2, we need to show that Ae1 = I1 (and similarly for I2). The
inclusion “⊆” is clear. To show “⊇”, take any element a ∈ I1. Since I1 ⊂ Ae, we
can write a = be. But now I1 ∋ a = be = be1 + be2; and since the first summand is
in I1 and the second in I2 we get be2 = 0 and a = be1 ∈ Ae1. □

5.3. Bimodules and tensor products.

Definition 5.8. If A and B are two k-algebras, an (A,B)-bimodule is a vector
space M that is at the same time a left A-module and a right B-module, such that
the actions of A and B commute:

(a ·m) · b = a · (m · b) for every a ∈ A, b ∈ B,m ∈M.



6. THE GROUP ALGEBRA; INDUCED REPRESENTATIONS 33

In other words, we just have a vector space with some ring A acting on the left and
some ring B acting on the right, and the actions are compatible. We sometimes
will write AMB to remember which ring is acting from where. A morphism of
(A,B)-bimodules is a linear map f : M → N such that f(amb) = af(m)b for all
a ∈ A, b ∈ B,m ∈M .

Remark 5.9. • LeftA-modules are the same as (A, k)-bimodules, and right
A-modules are the same as (k,A)-bimodules.

• If A is a commutative algebra, left A-modules, right A-modules, and
(A,A)-bimodules are the same thing.

• Every algebra A is an (A,A)-bimodule over itself.

Definition 5.10. If now we have three rings A,B,C, an (A,B)-bimodule AMB ,
and a (B,C)-bimodule BNC , we can define their tensor product M ⊗B N (or more
verbose: (AMB) ⊗B (BNC)), which is an (A,C)-bimodule. It can be constructed
as a quotient

(M ⊗N)/L, with L = Span{(x · b)⊗ y − x⊗ (b · y) | x ∈M,y ∈ N, b ∈ B},
where M ⊗N is the tensor product of vector spaces from Section 2.2. The actions
of A and C are given by

a · [x⊗ y] · c = [(ax⊗ yc)].

Remark 5.11. (k, k)-bimodules are just vector spaces, and in the case A = B =
C = k the tensor product M ⊗kN defined above is just the tensor product M ⊗N
of vector spaces.

Remark 5.12 (*). The tensor product of bimodules satisfies a universal property:
the canonical map

ϕ :M ×N →M ⊗B N

is the universal8 bilinear map from M × N to an (A,C)-bimodule satisfying the
following properties (for all a ∈ A, b ∈ B, c ∈ C, x ∈M , y ∈ N):

• ϕ respects the left A-action: ϕ(ax, y) = aϕ(x, y),
• ϕ is B-balanced : ϕ(xb, y) = ϕ(x, by),
• ϕ respects the right C-action: ϕ(x, yc) = ϕ(x, y)c.

6. The group algebra; induced representations

6.1. The group algebra.

Definition 6.1. The group algebra CG of a finite group G is the free vector space
{eg | g ∈ G}, equipped with a product defined by eg · eh = egh.

There is a one-to-one correspondence between G-representations and left CG-
modules: if V is a left CG-module it becomes a representation via g · v := eg · v,
and if V is a G-representation then it becomes a CG-module via (

∑
g∈G ageg) ·

v :=
∑
g∈G ag(g · v). Moreover, the notions “morphism of G-representations” and

“morphism of left CG-modules” agree9. By definition, irreducible representations

8In the exact same sense as Remark 2.5; you can write down the relevant commutative

diagram as an exercise.
9In category theory language: there is an equivalence of categories between G-representations

and left CG-modules
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agree with irreducible modules. Maschke’s theorem (Theorem 3.26) can be restated
as: every indecomposable CG-module is irreducible.

Remark 6.2. Here is one more equivalent definition: a representation is a mor-
phism CG→ End(V ) of unital C-algebras.

Remark 6.3. The regular representation RG is just the ring CG, viewed as a
module over itself. The left ideals in CG are precisely the subrepresentations of
RG.

Proposition 6.4. Every left ideal in CG is of the form CG · e, where e is an
idempotent. 10

Proof. Whenever V ⊂ CG is a subrepresentation, we can apply Theorem 3.26
to write CG = V ⊕W as CG-modules. In particular we get a G-linear map

π : CG↠ V ⊂ CG.
Since π(π(1) ·1) = π(1) ·π(1), the element e := π(1) is an idempotent, and V ⊂ CG
is the ideal generated by e. □

By Lemma 5.7, every primitive idempotent e in CG gives rise to an irreducible
CG-module CG · e. Combining Corollary 4.15 and Proposition 6.4, we see that
every irrep arises in this way. In the next chapter, we will construct the irreducible
representations of the symmetric group by finding sufficiently many idempotents in
the group algebra.

Remark 6.5. Exercise 4.19 says that the isotypic component corresponding to the
irrep Vi is the ideal generated by the idempotent

dimVi
|G|

∑
g∈G

χVi
(g)eg

.

We already know that RG ∼=
⊕

i V
⊕ dimVi
i , where the sum is over all irreps Vi.

We can refine this statement in terms of the group algebra 11.

Proposition 6.6. * We have an isomorphism of C-algebras

CG ∼=
⊕
i

End(Vi).

Proof. For every irrep Vi, we have a morphism CG→ End(Vi) of C-algebras,
given by the action of CG. So we get a natural morphism ϕ : CG →

⊕
i End(Vi).

Now note that for every representation V , the map CG → End(V ) factors over ϕ.
Explicitely: if V =

⊕
i V

ai
i , we get the composition

CG ϕ−→
⊕
i

End(Vi)→
⊕
i

End(Vi)
ai → End(

⊕
i

V aii ).

Taking V = RG to be the regular representation, we get that CG → End(RG)
factors over ϕ. But CG → End(RG) is injective, hence ϕ needs to be injective as
well. Since dimCG =

∑
i (dimVi)

2 = dim
⊕

i End(Vi), it follows that ϕ is also
surjective. □

10In other words: CG is a semisimple algebra.
11For the people also attending the course on associative algebras: compare the following

statement with the Artin-Wedderburn theorem
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6.2. Restriction and induction. For this section, we fix a finite group G
and a subgroup H. Given a representation of G, we can restrict it to H:

Definition 6.7. For V a representation of G the restriction ResGH V (or simply
ResV ) is the H-representation with underlying vector space V , and action of H
given by restricting the action of G.

Remark 6.8. The character χResV : H → C of ResGH V is just the character of V
restricted to H.

We now introduce a construction that goes in the other way: given a represen-
tation of the smaller group G, we construct a representation of the bigger group H.
This construction is most easily stated using the language of tensor products over
the group algebra:

Definition 6.9. For W a CH-module, the induced representation IndGHW is the
CG-module defined as the tensor product

IndGHW = CG⊗CH W.

(Here we viewed CG as a (CG,CH)-bimodule via the multiplication in CG.)

This definition is both short and useful in proofs, but it is not very explicit.
We now give a more explicit (but less elegant) description of IndGHW : let G/H
denote the set of right cosets (Definition 1.16) and choose for every coset σ ∈ G/H
a representative gσ ∈ σ. So every element of G can be uniquely written as a product
gσh, for some σ ∈ G/H and h ∈ H.

As a vector space, IndGHW is a direct sum of |G/H| copies of W , labeled by
the elements of G/H. We write12

V = IndGHW =
⊕

σ∈G/H

Wσ,

where Wσ is just the copy of W corresponding to σ. The group action is defined
as follows: if w ∈Wσ ⊂ V , we define

ρV (g)(w) := ρW (h)(w) ∈W τ ⊂ V, where ggσ = gτh.

Exercise 6.10. (Exercise 4 on Sheet 3) Show that the two constructions agree:
consider the linear map

CG⊗CH W →
⊕

σ∈G/H

Wσ

egσh ⊗ w 7→ h · w ∈Wσ

(where h · w := ρW (h)(w)). Show that this is well-defined and an isomorphism of
CG-modules.

Exercise 6.11. (Exercise 2 on Sheet 3) The character of the induced representation

IndW = IndGHW can be computed as follows:

χIndW (g) =
∑

σ:g−1
σ ggσ∈H

χW (g−1σ ggσ).

This is a useful way for constructing characters of a group G, assuming the char-
acters of a subgroup H are known.

12This is only a direct sum of vector spaces, not of representations.



36 2. REPRESENTATION THEORY OF FINITE GROUPS

Remark 6.12. There is a natural inclusion W ⊆ IndW , which is compatible with
the action of H (so more precisely, it is a morphism W ⊆ Res IndW ). It can be
described either as the map W → CG ⊗CH W : w → 1 ⊗ w, or alternatively as
the inclusion of the summand W e into

⊕
σ∈G/HW

σ, where e denotes the coset

containing the identity.

Theorem 6.13. Let W be a representation of H and U a representation of G.
Then there is a natural isomorphism of vector spaces

HomG(Ind
G
HW,U) ∼= HomH(W,ResGH U)

given by sending IndGHW → U to the composition W → IndGHW → U .

Proof. This is a special case of the more general statement for algebras: if
B ⊂ A is a subalgebra, U is an A-module and W is a G-module, then there is a
natural isomorphism (of vector spaces)

HomA(A⊗B W,U) ∼= HomB(W,U).

To show this statement, we note that (by the universal property 5.12) elements of
HomA(A⊗BW,U) are in bijection with bilinear maps ϕ : A×W → U satisfying the
compatibility conditions ϕ(aa′, w) = aϕ(a′, w) and ϕ(ab, w) = ϕ(a, bw) (for a, a′ ∈
A, b ∈ B, w ∈W ). Given such a bilinear map, we get a B-module homomorphism
ψ : W → U by ψ(w) = ϕ(1, w), and conversely given a B-module homomorphism
ψ :W → U we can define ϕ(a,w) = a · ψ(w). □

Remark 6.14. For a proof using the explicit construction, see [FH91, Proposition
3.17].

Corollary 6.15 (Frobenius reciprocity). Let W be a representation of H and U a
representation of G. Then

⟨χIndW , χU ⟩G = ⟨χW , χResU ⟩H ,
where ⟨−,−⟩G and ⟨−,−⟩H are the Hermitian inner product from Theorem 4.11.

Proof. By linearity, it suffices to consider the case where U and W are irre-
ducible. Then ⟨χIndW , χU ⟩G is the multiplicity of U in the direct sum decomposi-
tion of IndW , which by Schur’s lemma is equal to the dimension of HomG(IndW,U).
Similarly, ⟨χW , χResU ⟩H is the multiplicity of W in the direct sum decomposition
of ResU , which is equal to the dimension of HomH(W,ResU). The result now
follows from Theorem 6.13. □

Example 6.16. Let G = S3 the permutations of {1, 2, 3} and S2
∼= H ⊂ G be the

permutations that fix the element 3. The irreducible representations of S3 were
described in Exercise 4.5. Since S2 is abelian, it has just two irreps and both are
one-dimensional: the trivial representation Utriv and the alternating representation
Ualt (which has ρUalt

((12)) = −1). By looking at the characters, we can see that

Res(Vtriv) ∼= Utriv, Res(Valt) ∼= Ualt, Res(Vstand) ∼= Utriv ⊕ Ualt.

So Frobenius reciprocity tells us that

Ind(Utriv) ∼= Vtriv ⊕ Vstand, Ind(Ualt) ∼= Valt ⊕ Vstand.



CHAPTER 3

Representation theory of the symmetric group

7. Partitions and Young tableaux

Definition 7.1. A partition λ of a natural number d is a tuple (λ1, . . . , λk) of
positive integers such that d = λ1 + · · · + λk and λ1 ≥ λ2 ≥ · · · ≥ λk. Some
common notations we will use throughout are

• λ ⊢ d: “λ is a partition of d.”
• |λ| = d: “The sum of the entries of λ is d.”
• len(λ) = k: “The number of entries in λ is k.”

Recall that the symmetric group Sd consists of the permutations of the set
[d] = {1, . . . , d}. Elements of Sd are often denoted by cycle decomposition, which
is an expression of the form

(7.1) (a1,1, . . . , a1,λ1
)(a2,1, . . . , a2,λ2

) · · · (ak,1, . . . , ak,λk
),

where the occurring numbers ai,j are precisely the numbers 1, . . . , d (in particular

d =
∑k
i=1 λi). The cycle decomposition (7.1) corresponds to the permutation that

sends ai,j to ai,j+1 for j < λi, and sends ai,λi
to ai,1. Clearly every element of

Sd can be represented by a cycle decomposition, and two cycle decompositions
represent the same element of Sd if and only if they agree up to permutation of
the cycles, and cyclic permutation of the entries in each cycle. To every element σ
of Sd we associate a partition λ(σ) ⊢ d, by picking a cycle decomposition (7.1) for
which λ1 ≥ λ2 ≥ · · · ≥ λk and putting λ(σ) := (λ1, . . . , λk).

In Exercise 1.11, we described the conjugacy classes of Sd. Since this result is
fundamental for this entire chapter, I will put the solution of that exercise here as
a proposition:

Proposition 7.2. (1) If σ, π ∈ Sd are permutations and σ has cycle decom-
position

(7.2) (a1,1, . . . , a1,λ1
)(a2,1, . . . , a2,λ2

) · · · (ak,1, . . . , ak,λk
),

then π ◦ σ ◦ π−1 has cycle decomposition

(π(a1,1), . . . , π(a1,λ1
))(π(a2,1), . . . , π(a2,λ2

)) · · · (π(ak,1), . . . , π(ak,λk
)).

(2) The assignment σ 7→ λ(σ) induces a bijection between the conjugacy
classes of Sd and the partitions of d.

Proof. Part (1) is a direct computation: any number in {1, . . . , d} is of the
from π(ai,j), and the composition π◦σ◦π−1 maps that to π(ai,j+1) by construction.
From (1) it immediately follows that conjugate elements give rise to the same parti-
tion. But the converse holds as well: if λ(σ) = λ(σ′) then we can say that σ is given
by a cycle decomposition (7.2) and σ′ is given by a different cycle decomposition

(b1,1, . . . , b1,λ1
)(b2,1, . . . , b2,λ2

) · · · (bk,1, . . . , bk,λk
)

37
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with same cycle lengths λi. But then we can take π to be the permutation that
sends ai,j to bi,j for all i, j, and find that σ′ = π◦σ◦π−1, i.e. σ and σ′ are conjugate.
This shows (2). □

Definition 7.3. A Young diagram is a finite collection of boxes, arranged in left-
aligned rows, with the row lengths in non-increasing order. Young diagrams with
d boxes are in bijection with partitions of d: if λ = (λ1, . . . , λk), then the corre-
sponding Young diagram has λi boxes in the i’th row. We will from now on use
the concepts “partition” and “Young diagram” interchangeably; in particular the
Young diagram associated to a partition λ will be simply denoted by λ. We will
use the notation [λ] for the set of boxes in the Young diagram λ.

Remark 7.4. For λ a Young diagram, the number of boxes is equal to |λ|, the
number of rows is equal to len(λ), and the number of columns is equal to λ1.

Example 7.5. Let λ = (4, 2, 1) ⊢ 7, then the corresponding Young diagram is
given by

Returning to the symmetric group Sd, we know that the irreps of Sd are in
bijection with the conjugacy classes, which are in turn in bijection with Young
diagrams with d boxes. In this chapter we will make this explicit, by constructing
for any Young diagram an irrep. Moreover, we will see how to read off information
about an irrep, like its dimension or even its character, from the corresponding
Young diagram.

Example 7.6. There are three Young diagrams with 3 boxes:

These are in bijection with the three irreps of S3 listed in Exercise 4.5 and Exam-
ple 4.21. We will soon see that the left diagram is Vtriv, the middle one is Vstand,
and the right one is Valt.

Example 7.7. There are five Young diagrams with 4 boxes:

These are in bijection with the five irreps of S4 (see the exercise sheets). We will
return to this example later.

We close this section with some combinatorial definitions that we will need
later:

Definition 7.8. For λ a Young diagram (or partition), the transposed diagram (or
conjugate partition) λT is the Young diagram obtained by interchanging the rows
and columns: the i’th row of λT has as many boxes as the i’th column of λ.
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Example 7.9. The transpose of the Young diagram above is the diagram

corresponding to the partition λT = (3, 2, 1, 1) ⊢ 7.

Exercise 7.10. An alternative, less visual, definition of conjugate partition is the
following: if λ = (λ1, . . . , λk), then write ℓ = λ1, and define λT := (µ1, . . . , µℓ),
where µj = #{i | λi ≥ j} = max{i | λi ≥ j}. Convince yourself that this agrees
with the definition above.

Definition 7.11. Given a Young diagram λ ⊢ d, a Young tableau T on λ is a
bijection [λ] → [d] between the boxes of λ and the numbers 1, . . . , d. We can
visualize such a Young tableau T by numbering the boxes in λ (see Example 7.12).
A Young tableau is called standard if the entries in each row and column are
increasing.

Example 7.12. Here are two Young tableaux on the Young diagram from Exam-
ple 7.5. The left one is standard, the right one is not.

1 2 6 7

3 4

5

1 4 3 6

7 5

2

Given a Young diagram λ ⊢ d, there is a natural left action of Sd on the set of
Young tableaux on λ: the Young tableau σ · T , viewed as a bijection [λ] → [d], is
just the composition σ ◦ T .

Example 7.13. We have

(245)(376)·
1 2 6 7

3 4

5

=

1 4 3 6

7 5

2

.

Definition 7.14. For every Young diagram λ, we have two maps rowλ : [λ]→ N,
which maps a box to the index of the corresponding row, and colλ : [λ]→ N, which
maps a box to the index of the corresponding column. These will be useful for
formally writing down the more visual arguments we will be making later.

Note that in particular for every Young tableau T on λ, we have the map
rowλ ◦T−1 : [d] 7→ N (respectively colλ ◦T−1 : [d] 7→ N) mapping each number
1, . . . , d to the row (resp. column) it is in.

Example 7.15. If T is the leftmost tableau in Example 7.12, we have rowλ ◦T−1(6) =
1 and colλ ◦T−1(6) = 3, since 6 is in the first row and third column.

8. Irreducible representations of the symmetric group

As discussed in Section 6.1, the irreps of Sd can be constructed as ideals CSd ·e
in the group algebra, where e is a primitive idempotent. So our goal is the following:
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For every Young diagram λ ⊢ d, construct a primitive idem-
potent cλ ∈ CSd, in such a way that the irreps CSd · cλ are
nonisomorphic.

We will actually do a bit more: for every Young tableau we will construct a
primitive idempotent c̃(T ) ∈ CSd, in such a way that two irreps CSd · c̃(T ) and
CSd · c̃(T ′) are isomorphic if and only if the underlying Young diagrams of T and
T ′ are the same. (Different Young tableaux on the same Young diagram will then
give rise to different embeddings of the same irrep into CSd.)

Definition 8.1. Let λ ⊢ d be a Young diagram with d boxes, and let T be a Young
tableau on λ.

(1) The subgroup Row(T ) ⊆ Sd consists of all permutations which preserve
each row of T . More formally:

Row(T ) = {σ ∈ Sd | rowλ ◦T−1 = rowλ ◦T−1 ◦ σ}.
(2) The subgroup Col(T ) ⊆ Sd consists of all permutations which preserve

each column of T . More formally:

Col(T ) = {σ ∈ Sd | colλ ◦T−1 = colλ ◦T−1 ◦ σ}.
(3) We define

a(T ) =
∑

σ∈Row(T )

eσ ∈ CSd.

(4) We define

b(T ) =
∑

σ∈Col(T )

sgn(σ)eσ ∈ CSd.

(5) Finally, we define

c(T ) := a(T ) · b(T ) ∈ CSd;

this element is called the Young symmetrizer associated to T .

As promised, here is the main result of this chapter: a construction for all
representations of the symmetric group.

Theorem 8.2. For any Young tableau T , the Sd-representation CSd · c(T ) is
irreducible. Moreover, two such irreps CSd · c(T ) and CSd · c(T ′) are isomorphic
if and only if the underling Young diagrams of T and T ′ are the same.

So for every partition λ ⊢ d, we can construct an irrep Vλ by picking a Young
tableau T on λ and defining1 Vλ := CSd · c(T ). Since we already know from
Theorem 4.18 that the number of irreps of Sd is equal to the number of partitions
of d, Theorem 8.2 tells us that the Vλ, where λ ranges over all partitions of d, form
a complete set of pairwise nonisomorphic irreps for Sd..

Remark 8.3. As we will soon see, the Young symmetrizers c(T ) are not quite
idempotents; they are idempotents up to scaling. More precisely we will see that

c(T )2 = nT c(T ) for some nT ∈ C \ {0} (which is equivalent to saying that c(T )
nT

is

an idempotent). As the ideals CSd · c(T ) and CSd · c(T )
nT

are the same this doesn’t
really make a difference.

1This is well-defined as a Sd-representation, but not as an ideal in CSd since the latter
depends on which tableau T we chose.
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Before we start proving Theorem 8.2, let us see it in action for the symmetric
group S3:

Example 8.4. Consider the Young tableau

T= 1 2 3 ,

then we have Row(T ) = S3 and Col(T ) = {id}, so we have

c(T ) = a(T ) =
∑
σ∈S3

eσ = eid + e(123) + e(132) + e(12) + e(13) + e(23).

Since c(T ) is fixed by the action of S3, the ideal CS3 · c(T ) is just the one-
dimensional vector space C · c(T ); as a representation it is given by the trivial
representation:

V = Vtriv.

This example immediately generalizes to any d: if λ is the Young diagram with
just one row (that is, the partition (d)), then Vλ is the trivial representation.

Example 8.5. Consider the Young tableau

T=

1

2

3

,

then we have Row(T ) = {id} and Col(T ) = S3, so we have

c(T ) = b(T ) =
∑
σ∈S3

sgn(σ)eσ = eid + e(123) + e(132) − e(12) − e(13) − e(23).

Again, the ideal CS3 · c(T ) is just the one-dimensional vector space C · c(T );
but this time as a representation it is given by the alternating representation:

V = Valt.

This example also generalizes to any d: if λ is the Young diagram with just one
column (that is, the partition (1, . . . , 1)), then Vλ is the alternating representation.

Example 8.6. Consider the Young tableau

T=
1 2

3
,

then we have Row(T ) = {id, (12)} and Col(T ) = {id, (13)}, so we have

c(T ) = (eid + e(12)) · (eid − e(13)) = eid + e(12) − e(13) − e(132).
This time, the ideal CS3 · c(T ) is a two-dimensional vector space spanned by

c(T ) = eid + e(12) − e(13) − e(132) and (13) · c(T ) = e(13) + e(123) − eid − e(23).
Since the only 2-dimensional representation of S3 is the standard representation,
we find

V = Vstandard.

If we instead pick the Young tableau

T’=
1 3

2
,
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we get

c(T ′) = (eid + e(13)) · (eid − e(12)) = eid + e(13) − e(12) − e(123).

The ideal CS3 · c(T ′) is a two-dimensional vector space spanned by

c(T ′) = eid + e(13) − e(12) − e(123) and (12) · c(T ′) = e(12) + e(132) − eid − e(23).

Note that CS3 · c(T ) and CS3 · c(T ′) are both isomorphic to V = Vstandard,

but as ideals (i.e. as subspaces of CS3) they are not the same.

In the example above, note that the span of CS3 ·c(T ) and CS3 ·c(T ′) is the en-
tire isotypic component V ⊕2standard in the decomposition of the regular representation
CS3. Putting the three previous examples together, we see that a decomposition
of CS3 into irreducible subrepresentations is given by

CS3 = CS3 · c ( 1 2 3 )⊕ CS3 · c

(
1
2
3

)
⊕ CS3 · c

(
1 2
3

)
⊕ CS3 · c

(
1 3
2

)
.

This is a special case of Theorem 8.23, which we will prove later.

8.1. Proof of Theorem 8.2. Throughout this section, we will fix a number
d and consider the symmetric group Sd. We will write A := CSd for its group
algebra. All occurring Young diagrams and Young tableaux have exactly d boxes.

For T a Young diagram, we will write rowT for the map [d] → N that maps a
number i ∈ [d] to the row it is in. To connect this with the notation from before:
we have rowT := rowλ ◦T−1 and Row(T ) = {σ ∈ Sd | rowT ◦σ = rowT }. Similarly
we have colT := colλ ◦T−1 and Col(T ) = {σ ∈ Sd | colT ◦σ = colT }.

We will start by showing the following:

Proposition 8.7 (First part of Theorem 8.2). If T and T ′ are Young tableaux
on the same Young diagram λ, then the representations A · c(T ) and A · c(T ′) are
isomorphic.

Proof. First we show that for any g ∈ Sd

Row(g · T ) = g · Row(T ) · g−1 and Col(g · T ) = g · Col(T ) · g−1.

Indeed, note that rowg·T = rowT ◦g−1, so that

σ ∈ Row(g · T ) ⇐⇒ rowT ◦g−1 = rowT ◦g−1 ◦ σ
⇐⇒ rowT = rowT ◦g−1 ◦ σ ◦ g
⇐⇒ g−1 ◦ σ ◦ g ∈ Row(T )

⇐⇒ σ ∈ g · Row(T ) · g−1

and similarily for Col.
Next, we show that a(g · T ) = g · a(T ) · g−1. Indeed:

a(g · T ) =
∑

σ∈Row(g·T )

eσ

=
∑

σ′∈Row(T )

egσ′g−1

= g · a(T ) · g−1.
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By a similar computation we find that b(g · T ) = g · b(T ) · g−1, and since c(T ) =
a(T )b(T ) we also obtain

c(g · T ) = g · c(T ) · g−1.
Finally, let T and T ′ be Young tableaux on the same diagram. Then there exists
a permutation g ∈ Sd such that T ′ = g · T . Then c(T ′) = g · c(T ) · g−1, and
hence A · c(T ′) = A · c(T ) · eg−1 . So the map A → A : x 7→ x · eg−1 restricts to an
isomorphism A · c(T )→ A · c(T ′) (with inverse given by x 7→ x · eg). □

Observation 8.8. The Young symmetrizer c(T ) has the following property: for
every σ ∈ Row(T ) and τ ∈ Col(T ), it holds that σ · c(T ) · τ = sgn(τ) · c(T ).

Proof. We have

σ · c(T ) · τ =σ · a(T ) · b(T ) · τ

=eσ ·

 ∑
σ′∈Row(T )

eσ′

 ·
 ∑
τ ′∈Col(T )

sgn(τ ′)eτ ′

 · eτ
=sgn(τ) ·

 ∑
σ′′∈Row(T )

eσ′′

 ·
 ∑
τ ′′∈Col(T )

sgn(τ ′′)eτ ′′


=sgn(τ) · c(T ).

□

Our next goal (which we will reach in Lemma 8.15) will be to show that c(T )
is the only element of A satisfying the above property. The main tool for this will
be the combinatorial Lemma 8.12, which is a converse to the following observation:

Observation 8.9. Let T be a Young tableau, and pick σ ∈ Row(T ), τ ∈ Col(T ).
Write T ′ = σ · τ · T , and let i ̸= j ∈ [d] be in the same row of T . Then in T ′, the
numbers i and j are not in the same column.

Proof. We have that rowT (i) = rowT (j). Since σ
−1 ∈ Row(T ), we get

rowT (σ
−1(i)) = rowT (σ

−1(j)).(8.1)

Now suppose by contradiction that colT ′(i) = colT ′(j). Then

colT (τ
−1(σ−1(i))) = colT (τ

−1(σ−1(j))).

Since τ−1 ∈ Col(T ), this implies

colT (σ
−1(i)) = colT (σ

−1(j)).(8.2)

But (8.1) and (8.2) imply that σ−1(i) = σ−1(j), so i = j, a contradiction. □

Definition 8.10. We order the partitions lexicographically:

λ < µ ⇐⇒ ∃i ∈ N with λj = µj for j < i, and λi < µi.

This defines a total ordering on the set of partitions of d. In words: λ < µ if for
the first index i in which λ and µ differ, we have λi < µi.

Example 8.11. For the partitions of d = 5, we have

(1, 1, 1, 1, 1) < (2, 1, 1, 1) < (2, 2, 1) < (3, 1, 1) < (3, 2) < (4, 1) < (5)

Now we are ready to state our main combinatorial lemma.
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Lemma 8.12. Let T and T ′ be Young tableaux on the diagrams λ and µ respec-
tively, with λ ≥ µ. Suppose that for every i ̸= j ∈ [d] in the same row of T , we
have that i and j are not in the same column of T ′. Then λ = µ, and there exist
σ ∈ Row(T ) and τ ∈ Col(T ) such that T ′ = σ · τ · T .

Proof. If λ1 > µ1 then µ has fewer columns than λ, so two of the numbers in
the first row of T need to be in the same column of T ′, a contradiction. So λ1 = µ1,
and we find some τ1 ∈ Col(T ′) such that the first rows of T and τ1 · T ′ have the
same elements.

Now consider T and τ1 · T ′ and ignore their first rows. Repeating the above
argument, we find that λ2 = µ2, and we can find τ2 ∈ Col(T ′) such that in both
the first and the second rows of T and τ2 · τ1 · T ′ have the same elements.

Eventually we find that λ = µ, and we can find τ ′ ∈ Col(T ′) such that T and
τ ′ · T ′ have the same numbers in each row. This means there exists a σ ∈ Row(T )
such that σ · T = τ ′ · T ′. Now

τ ′ ∈ Col(T ′) = Col(τ ′ · T ′) = Col(σ · T ) = σ · Col(T ) · σ−1.

(For the first equality: if τ ′ ∈ Col(T ′) then Col(T ′) = Col(τ ′ · T ′)).
So if we define τ := σ−1 · τ ′−1 · σ, then τ ∈ Col(T ), and

σ · τ · T = τ ′−1 · σ · T = T ′.

□

We need to understand the Young symmetrizers c(T ) a bit better.

Lemma 8.13. Let T be a Young tableau.

(1) Row(T ) ∩ Col(T ) = {id}.
(2) Every g ∈ Sd can be written in at most one way as a product σ · τ with

σ ∈ Row(T ) and τ ∈ Col(T ).

Proof. Part (1) is immediate: if g ∈ Row(T ) ∩Col(T ) means that g needs to
map every i ∈ [d] to a number that is both in the same row and the same column
as i, but the only such number is i. Part (2) follows from (1): if στ = σ′τ ′ then

σ′−1σ = τ ′τ−1 ∈ Row(T ) ∩ Col(T ) = {id},

so σ = σ′ and τ = τ ′. □

The above lemma gives us an alternative way of thinking about c(T ):

Definition 8.14. Write

RC(T ) := {g ∈ Sd | g = σ · τ for some σ ∈ Row(T ), τ ∈ Col(T )}.

For g = σ · τ ∈ RC(T ), we will write sgnT (g) := sgn(τ), which is well-defined by
Lemma 8.13 (2).

Using this definition, we can write

c(T ) =
∑

g∈RC(T )

sgnT (g)eg.

In particular, note that the coefficient of eid is equal to sgnT (id) = sgn(id) = 1.
We can now prove the converse of Observation 8.8:



8. IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP 45

Lemma 8.15. Let T be a Young tableau and x ∈ A. Suppose that

(8.3) σxτ = sgn(τ)x for all σ ∈ Row(T ), τ ∈ Col(T ).

Then x = αc(T ) for some α ∈ C.

Proof. We can write x =
∑
g∈Sd

ageg.

Step 1. For g /∈ RC(T ) the coefficient ag is equal to 0.
If we write T ′ = g ·T , then by Lemma 8.12, we find i ̸= j in the same row of T

and in the same column of T ′. So the transposition (ij) is both in Row(T ) and in
Col(T ′) = g · Col(T ) · g−1. So we can apply our assumption (8.3) to σ = (ij) and
τ = g−1(ij)g (note that sgn(τ) = −1):∑

h∈Sd

ahe(ij)hg−1(ij)g = −
∑
g′∈Sd

ag′eg′ .

Comparing coefficients of eg yields that ag = −ag, so ag = 0.
Step 2. Now if we pick g = στ ∈ RC(T ), and look at the coefficient of eg in our
equality σxτ = sgn(τ)x, we find aid = sgn(τ)aστ = sgnT (g)ag. Hence

a =
∑

g∈RC(T )

ageg =
∑

g∈RC(T )

sgnT (g)aideg = aidc(T ).

□

Corollary 8.16. For every y ∈ A we have c(T )yc(T ) = αc(T ) for some α ∈ C.

Proof. Note that, by a similar computation as Observation 8.8, the ele-
ment x := c(T )yc(T ) satisfies the condition (8.3). So the statement follows from
Lemma 8.15. □

Taking y = 1 in Corollary 8.16 yields that c(T )2 = nT c(T ) for some nT ∈ C.
In the following lemma we compute nT .

Lemma 8.17. We have c(T )2 = nT c(T ), where nT = d!
dim(A·c(T )) .

Proof. Write c = c(T ). We know that c2 = αc for some α ∈ C. We consider
the linear map f : A→ A given by right multiplication by c and compute its trace
in two ways:

• Since im(f) = Ac, we have tr(f) = tr(f
∣∣
Ac

) (take a basis of Ac, extend to

A, and look at the matrix of f). But since (ac)c = nTac for each a ∈ A,
we get that f

∣∣
Ac

is just multiplication by α. So tr(f) = α · dim(Ac).

• With respect to the standard basis {eσ | σ ∈ Sd} of A, the matrix of f
has (σ, τ)’th entry given by the coefficient of eσ in τ · c(T ). In particular,
we can verify that the diagonal entries are equal to 1, therefore tr(f) = d!.

□

In particular we see that nT ̸= 0. We will write c̃(T ) := c(T )
nT

for the normalized

Young symmetrizer. By the previous lemma, we have c̃(T )2 = c̃(T ), i.e. c̃(T ) is an
idempotent in the group algebra A.

Proposition 8.18 (Second part of Theorem 8.2). The Sd-representation A · c̃(T )
is irreducible.
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Proof. In the light of Lemma 5.7, we need to show that c̃(T ) is a primitive
idempotent. So suppose c̃(T ) = e1 + e2 for e1, e2 orthogonal idempotents. Then
Corollary 8.16 tells us that c̃(T )e1c̃(T ) = αc̃(T ) for some α ∈ C. But writing this
out we get e1 = α · (e1 + e2). Multiplying both sides by e2 we get 0 = αe2. So
either e1 = 0 or e2 = 0. □

Lemma 8.19. If λ > µ and T, T ′ are Young tableaux on λ, µ respectively, then
c(T ′)Ac(T ) = 0.

Proof. Pick any g ∈ Sd. Since λ > µ, by Lemma 8.12 there are i, j in the
same row of g · T and column of T ′. Write τ = (ij) ∈ Row(g · T ) ∩ Col(T ′). Then

c(T ′) · eg · c(T ) = c(T ′) · c(g · T ) · eg = c(T ′) · eτ · eτ · c(g · T ) · eg
= −c(T ′) · c(g · T ) · eg = −c(T ′) · eg · c(T ).

So c(T ′) · eg · c(T ) = 0. Since g was arbitrary we get c(T ′)Ac(T ) = 0. □

Exercise 8.20. (Not necessary for proof.) Also if λ < µ we have c(T ′)Ac(T ) = 0.

Proposition 8.21 (Third part of Theorem 8.2). If T and T ′ are Young tableaux
on distinct Young diagrams λ, µ, then Ac(T ) and Ac(T ′) are not isomorphic.

Proof. We can assume λ > µ. If there is an isomorphism f : Ac(T ′)→ Ac(T )
of Sd-representations, then f(c̃(T

′)) = xc̃(T ) for some x ∈ A, but then
f(c̃(T ′)) = f(c̃(T ′)2) = c̃(T ′)f(c̃(T ′)) = c̃(T ′)xc̃(T ) = 0,

a contradiction with f being an isomorphism. □

8.2. Standard tableaux. The goal of this section is to prove the following
statement, which gives us one way of reading off the dimension of an irrep Vλ from
the Young diagram λ.

Theorem 8.22. The dimension of Vλ is equal to the number of standard Young
tableaux on λ.

This is a corollary of the following:

Theorem 8.23. The group ring CSd decomposes as a direct sum of left ideals

(8.4) CSd =
⊕
T

CSd · c(T )

where the sum is over all standard Young tableaux T of size d.

Proof of Theorem 8.22 assuming Theorem 8.23. Fix a partition λ ⊢ d.
By Corollary 4.15, the multiplicity of Vλ in the regular representation is equal to
dimVλ. But looking at (8.4), and recalling that CSd · c(T ) is an irrep which is
isomorphic to Vλ if and only if λ is the underlying tableau of T , this multiplicity is
precisely the number of standard Young tableaux on λ. □

There are two main ingredients going into the proof of Theorem 8.23. The first
(Lemma 8.26) is that for T and T ′ standard Young tableaux, the product of the
Young symmetrizers c(T ) and c(T ′) is zero. The second (Proposition 8.27) is a
purely combinatorial statement about the number of standard Young tableaux.

Definition 8.24. Let T and T ′ be standard Young tableaux with d boxes, and let
λ and µ be their underlying diagrams.
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• If λ ̸= µ we say T > T ′ if and only if λ > µ (Definition 8.10).
• If λ = µ we say T > T ′ if when we read T and T ′ lexicographically (i.e.
like a book), T (b) < T ′(b) for b ∈ [λ] the first box in which they differ.

If you find the above too informal: T > T ′ if there exists a b ∈ [λ]
such that

– T (b′) = T ′(b′) whenever rowλ(b
′) < rowλ(b).

– T (b′) = T ′(b′) whenever rowλ(b
′) = rowλ(b) and colλ(b

′) < colλ(b).
– T (b) < T ′(b).

This defines a total order on all standard Young tableaux with d boxes.

Example 8.25. Here are the standard Young tableaux on λ = (3, 2), ordered
according to the above definition:

1 2 3
4 5

>
1 2 4
3 5

>
1 2 5
3 4

>
1 3 4
2 5

>
1 3 5
2 4

Lemma 8.26. If T > T ′ are standard with d boxes, then c(T ′) · c(T ) = 0.

Proof. If T and T ′ have distinct underlying diagram, then this follows from
Lemma 8.19. So assume they have the same underlying diagram λ.
Step 1. Find i ̸= j in same row of T and same column of T ′.

Let a ∈ [λ] be the lexicographically first box where T and T ′ differ. We write
i = T (a) and k = T ′(a) (so i < k). Let b = T ′−1(i) be the box in T ′ containing
i. Note that b can not come lexicographically before a (since T and T ′ agree in
these positions), and can also not be down and to the right of a, since that would
contradict T ′ being a standard tableau. So b needs to be stricty down and strictly
to the left of a. Now we can let c ∈ [λ] be the box in the same row of a and the
same column of b, and let j = T (c) = T ′(c).

Here is a pictorial representation of Step 1. The shaded area is the part where
T and T ′ agree:

λ =
ac

b

T =
ij

T ′ =
kj

i

Step 2. Proceed as in Lemma 8.19: let τ be the transposition (ij), by construction
τ ∈ Row(T ) ∩ Col(T ′). But then

c(T ′) · c(T ) = c(T ′) · eτ · eτ · c(T ) = −c(T ′) · c(T ),

hence c(T ′) · c(T ) = 0. □

Proposition 8.27. Let fλ denote the number of standard Young tableaux on λ.
Then for any d ∈ N we have

∑
λ⊢d f

2
λ = d!.

We will use two combinatorial lemma’s in the proof of Proposition 8.27. The
first one is rather straightforward, the second one is much harder. We will write
µ→ λ if the Young diagram λ is obtained from µ by either adding a single box to
one of the rows, or by adding a new row of length 1. In the language of partitions:
µ→ λ means that either

λ = (µ1, . . . , µi−1, µi + 1, µi+1, . . . , µk)
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for some i ∈ {1, . . . , k}, or that

λ = (µ1, . . . , µk, 1).

Note that in the first case we need to have µi < µi+1.

Lemma 8.28. For λ ⊢ d, there is a bijection

{standard Young tableaux on λ} ↔
⋃
µ→λ

{standard Young tableaux on µ}.

Proof. Given a standard tableau T on λ, the box labeled d is always the last
box in its row and column, and if we remove it we obtain a standard tableau on
some µ → λ. Conversely, if we start with a µ → λ and a standard tableau T ′ on
it, we can add a box labeled d on the correct location to get a standard tableau on
λ. □

Lemma 8.29. For µ ⊢ d− 1, there is a bijection

{standard Young tableaux on µ}×{1, . . . d} ↔
⋃
λ←µ

{standard Young tableaux on λ}.

Proof sketch*. The bijection is given by the row-bumping algorithm. Given
a standard tableau T on µ, and a number j ∈ {1, . . . , d}, we first increase the label
of every box labeled j, . . . , d by one. Next we add a box labeled j to this tableau,
by performing the following steps:

(1) We first try to add a box labeled j to the first row:
(a) If j is greater than every entry in the first row, we just add j to the

end of the first row and are done with the algorithm.
(b) If not, find the leftmost box in the first row with entry greater than

j; call this entry j1; relabel the box by j, and continue to step (2).
(2) Next we try to add a box labeled j1 to the second row:

(a) If j1 is greater than every entry in the second row, we add j1 to the
second row and are done with the algorithm.

(b) If not, find the leftmost box in the second row with entry greater
than j1; call this entry j2, relabel the box by j1, and go to step (3).

(3) Repeat the above step for the third, fourth, . . . , row, until either we are
in case (a). If we reach the final row without ever being in case (a), we
add an extra row with a single box labeled jk.

The output of this algorithm is always2 a standard tableau on some λ ← µ. So
we get at least a map from left to right. To show it is a bijection, one argues that
given a standard tableaux on some λ← µ, we can remove the box that is in λ but
not in µ by performing the steps above in reverse. □

2Both this statement and the next one require some verification, which is why this is only a
proof sketch and not a proof.
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Proof of Proposition 8.27. By the above lemmas, we have fλ =
∑
µ→λ fµ

and d · fµ =
∑
λ←µ fλ. So

∑
λ⊢d

f2λ =
∑
λ⊢d

fλ ·

∑
µ→λ

fµ


=
∑
λ⊢d

∑
µ→λ

fλ · fµ

=
∑
µ⊢d−1

∑
λ←µ

fλ · fµ

=
∑
µ⊢d−1

fµ ·

∑
λ←µ

fλ


= d ·

∑
µ⊢d−1

f2µ

= d · (d− 1)! = d! (induction on d.)

□

Proof of Theorem 8.23. We first show that the sum is direct. So assume
by contradiction we can find elements q(T ) ∈ CSd such that

(8.5)
∑
T

q(T ) · c̃(T ) = 0,

where as usual the sum is over all standard tableaux with d boxes. Let T0 be the
maximal (with respect to the order defined in Definition 8.24) standard tableau
for which q(T ) · c̃(T0) ̸= 0. Then right multiplying (8.5) with c̃(T0) and using
Lemma 8.26 we find

0 =
∑
T≤T0

q(T ) · c̃(T ) · c̃(T0) = q(T0) · c̃(T0)2 = q(T0) · c̃(T0),

a contradiction.
We have now shown that

(8.6) CSd ⊇
⊕
T

CSd · c(T ),

and want to show this is actually an equality. Let us write Dλ for the dimension
of the irrep Vλ. As representations, the left hand side of (8.6) is isomorphic to⊕

λ⊢d

V Dλ

λ

by Corollary 4.15 (in particular we have d! = dimSd =
∑
D2
λ), and the right hand

side is isomorphic to ⊕
λ⊢d

V fλλ .

So (8.6) implies that we have fλ ≤ Dλ for every λ. But now Proposition 8.27
implies that we need to have an equality

∑
f2λ = d! =

∑
D2
λ. This can only hold if

fλ = Dλ for each λ ⊢ d, finishing the proof. □
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8.3. The hook length formula and Frobenius character formula. To
close the chapter on Sd, we state without proof two more important results about
the representation theory of the symmetric group. The first one is an alternative
formula to compute the dimension of an irreducible representation from its Young
diagram.

Definition 8.30. Let λ ⊢ d be a Young diagram. The hook length hλ(b) of a box
b ∈ [λ] is equal to the number of boxes in λ that are either directly below or directly
to the right of b (where the box b itself is counted once).

Example 8.31. Below is the Young diagram corresponding to the partition (4, 2, 1),
where in every box b we wrote its hook length hλ(b):

6 4 2 1
3 1
1

Theorem 8.32 (Hook length formula). Let λ ⊢ d be a Young diagram and Vλ
be the corresponding irreducible Sd-representation. Then

dimVλ =
d!∏

b∈[λ] hλ(b)
.

Example 8.33. For λ ⊢ 7 the Young diagram from Example 8.31, we have

dimVλ =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1
= 35.

Remark 8.34. Here are two possible ways of proving Theorem 8.32:

(1) By Theorem 8.22, it suffices to show that the hook length formula counts
the number of standard tableaux. This is a purely combinatorial state-
ment for which several direct proofs are known, but none of them are
easy.

(2) Theorem 8.32 can also be deduced as a corollary of Frobenius’ character
formula below.

Theorem 8.35. Let Vλ be an irrep of Sd, where λ = (λ1, . . . , λk) ⊢ d. Let
g ∈ Sd, and write µ = (µ1, . . . , µm) ⊢ d for its cycle shape. Then we can compute
the character χVλ

(g) as the coefficient of the monomial

xλ1+k−1
1 xλ2+k−2

2 · · ·xλk

k

in the polynomial ∏
1≤i<j≤k

(xi − xj)
m∏
i=1

xµi

1 + · · ·+ xµi

k .

A proof of this theorem can be found in [FH91, Lecture 4].

Example 8.36. Let λ = (3, 2) ⊢ 5 and consider the S5-representation Vλ. Take
g = (12) ∈ S5 a transposition, then µ = (2, 1, 1, 1). Then χVλ

(g) is the coefficient
of the monomial x41x

2
2 in the polynomial

(x1 − x2)(x21 + x22)(x1 + x2)
3 = x61 + 2x51x2 + x41x

2
2 − x21x42 − 2x1x

5
2 − x62,

so we find χVλ
(g) = 1.



CHAPTER 4

Representation theory of the general linear group

9. Polynomial and rational representations of GL(V )

In this chapter, we will fix an n-dimensional C-vector space V , and study finite-
dimensional representations of the infinite group GL(V ). Such a representation is
given by a group homomorphism ρ : GL(V )→ GL(W ), where W is another finite-
dimensional C-vector space.

Let’s write dimW = m. If we fix bases of V and W we get identifications
GL(V ) ∼= GL(n,C) and GL(W ) ∼= GL(m,C), and our representation is given by a
map of matrices

GL(n,C) ∼= GL(V )
ρ−→ GL(W ) ∼= GL(m,C).(9.1)

It is hard to make interesting statements about arbitrary representations of GL(V ).
However, GL(V ) is not just a group, it comes with a geometric structure1, and we
want to restrict ourselves to representations that preserve that geometric structure.

Definition 9.1. A representation ρ : GL(V )→ GL(W ) is polynomial (respectively
rational) if there exist bases of V andW and polynomials (resp. rational functions)
Pkℓ (for 1 ≤ k, ℓ ≤ m) in n2 variables such that the map (9.1) is given by

(aij)1≤i,j≤n 7→ (Pkℓ(aij))1≤k,ℓ≤m .

Exercise 9.2. In the above definition, we can replace “there exist bases of V and
W and polynomials (resp. rational functions) Pkℓ” by “for all bases of V and W ,
there exist polynomials (resp. rational functions) Pkℓ”.

Examples 9.3. • The identity map GL(V )→ GL(V ) is an n-dimensional
representation, known as the standard representation. It is clearly a poly-
nomial representation.
• The determinant map GL(V ) → GL(1,C) ∼= C∗ is a one-dimensional
representation of GL(V ). We will denote it by Det.
• More generally, for every a ∈ Z, the map

GL(V )→ C∗

A 7→ (detA)a

is a one-dimensional representation, which we will denote Deta. It is a
rational representation for every a ∈ Z, and a polynomial representation
if a ≥ 0.

1Algebraic geometers say GL(n,C) is a linear algebraic group, differential geometers say it is
a complex Lie group.

51
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Remark 9.4. Direct sums, tensors products, subrepresentations, and duals of ra-
tional representations are again rational. Direct sums, tensors products, and sub-
representations of polynomial representations are again polynomial. But the dual
of polynomial representation need not be polynomial: for instance the dual of the
representation A 7→ detA is the representation A 7→ (detA)−1.

Remark 9.5. For a rational representation, we require the rational functions
Pkℓ(aij) to be defined at all points of GL(n,C). One can verify that this implies

that Pkℓ(aij) =
pkℓ(aij)

det(aij)
bkℓ

for some polynomial pkℓ and some bkℓ ∈ N.

Remark 9.6. * A representation ρ being rational means that ρ is not just a
morphism of groups, but also a morphism of algebraic varieties. I.e. ρ is a morphism
of linear algebraic groups.

Example 9.7. Choose a basis {e1, . . . , en} of V , so we can write V = Cn and
GL(V ) = GL(n,C). We take exterior powers of the standard representation V =

Cn. Explicitly:
∧d

V has a basis given by {ei1 ∧· · ·∧eid | 1 ≤ i1 < . . . < id ≤ n}. If
we use this basis to identify GL(

∧d
V ) with GL

((
n
d

)
,C
)
, the representation

∧d
V

is given by mapping a matrix A ∈ GL(n,C) to it d-th compound matrix, whose
entries are the d× d minors of A.

If take n = 3 and d = 2, and order the basis of
∧2 C3 as (e1∧e2, e1∧e3, e2∧e3),

we get

GL(3,C) ∼= GL(V )→ GL(

2∧
V ) ∼= GL(3,C)a11 a12 a13

a21 a22 a23
a31 a32 a33

 7→
a11a22 − a12a21 a11a23 − a13a21 a12a23 − a13a22
a11a32 − a12a31 a11a33 − a13a31 a12a33 − a13a32
a21a32 − a22a31 a21a33 − a23a31 a22a33 − a23a32


Note that taking d = n, we have that

∧n
V is one-dimensional, and we recover the

determinant representation from the previous example.

Remark 9.8. The first important statements we proved for representations about
finite groups were Schur’s Lemma (Theorem 3.24) and complete reducibility (The-
orem 3.26). We in fact stated and proved Schur’s Lemma for an arbitrary group
G, so in particular also for GL(V ). In contrast, our proof for complete reducibility
relied on the fact that G was finite. It turns out that complete reducibility still
holds for rational/polynomial representations of GL(V ).

Theorem 9.9. Let V be a rational representation of GL(V ), and let W ⊆ V
be a subrepresentation. Then there exists another subrepresentation W ′ ⊆ V such
that V =W ⊕W ′.

Proof. Omitted. □

10. Characters for GL(n,C)

In this section, we will once and for all fix a basis of V , i.e. we identify GL(V )
with GL(n,C). Analogously to finite groups, we would like to study the representa-
tions of GL(n,C) via their characters. Recall that the conjugacy classes in GL(n,C)
correspond to Jordan normal forms. In particular there are infinitely many conju-
gacy classes, so we cannot represent the character of a representation with a finite
character table. However, observe that at least for a rational representation W ,
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if we know the value of the character χW on the dense subset of diagonalizable
matrices in GL(n,C), we know it everywhere by a continuity argument. But since
the character is constant on conjugacy classes, this means that the character of a
GL(n,C)-representation is uniquely determined by its value on diagonal matrices.
This motivates the definition below.

The invertible diagonal matrices form a subgroup of GL(n,C), which we call a
torus and will denote by T . We have an isomorphism T ∼= (C∗)n.
Definition 10.1. For ρW : GL(n,C) → GL(W ) a representation, the restricted
character χW

∣∣
T
is the restriction of the character to T , i.e. the composition

(C∗)n ∼= T ↪→ GL(n,C) tr−→ C

(t1, . . . , tn) 7→ tr

(
t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tn


)
.

Note that χW
∣∣
T
is a symmetric function in the variables (t1, . . . , tn): for every

permutation σ ∈ Sn, we have that χW
∣∣
T
(tσ(1), . . . , tσ(n)) = χW

∣∣
T
(t1, . . . , tn). If W

is a polynomial representation, then χW
∣∣
T
is a symmetric polynomial, and if W is

a rational representation, then χW
∣∣
T
is a symmetric Laurent polynomial.

Remark 10.2. For representations of GL(n,C), we will abuse notation and sim-
ply write χW instead of χW

∣∣
T
; we will also just say “character” when we mean

“restricted character”.

The formulas (4.1), (4.2), (4.4), (4.5) from Proposition 4.4 are still valid, and
allow us to compute the character of direct sums, tensor products, exterior powers,
and symmetric powers.

Exercise 10.3. If W is a representation of GL(V ) and W ∗ is the dual representa-
tion, we have

χW∗(t1, . . . , tn) = χW (t−11 , . . . , t−1n ).

In particular, the dual of a polynomial representation is typically not polynomial.

Example 10.4. • If W = V is the standard representation, then

χV (t1, . . . , tn) = t1 + t2 + · · ·+ tn.

• If W is the determinant representation, then

χW (t1, . . . , tn) = t1 · t2 · · · tn.
Exercise 10.5. (Exercise 1 on Sheet 5.) Let V be the standard representation of
GL(n,C).

• The character of
∧d

V is given by the elementary symmetric polynomial

Ed(t1, . . . , tn) =
∑

1≤i1<...<id≤n

ti1 · · · tid .

(hint: use Example 9.7).
• The character of SdV is given by the complete homogeneous symmetric
polynomial

Hd(t1, . . . , tn) =
∑

1≤i1≤...≤id≤n

ti1 · · · tid .
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11. Irreducible representations of GL(V )

For a finite group G, every irrep is a subrepresentation of the regular represen-
tation CG. This is what we used to construct all irreps of the symmetric group.
For G = GL(V ), the regular representation is not finite-dimensional, so we will
use a different strategy. Namely: we will start from the standard representation
V , take high tensor powers V ⊗d, and show that every irrep of GL(V ) occurs as a
subrepresentation of some V ⊗d.

Consider the GL(V )-representation V ⊗d. The left action of GL(V ) is given by

g · (v1 ⊗ · · · ⊗ vd) = gv1 ⊗ · · · ⊗ gvd.

Note that V ⊗d also comes equipped with a right action of the symmetric group Sd:

(v1 ⊗ · · · ⊗ vd) · σ := vσ(1) ⊗ · · · ⊗ vσ(d).

Finally, note that these actions commute:(
g · (v1 ⊗ · · · ⊗ vd)

)
· σ = g ·

(
(v1 ⊗ · · · ⊗ vd) · σ

)
.

In the language of Section 5: V ⊗d is an (CGL(V ),CSd)-bimodule.

Definition 11.1. Let λ ⊢ d be a partition. Let Tλ be a Young tableau with un-
derlying diagram λ and let c(Tλ) ∈ CSd be the corresponding Young symmetrizer.
Then we define the Schur module

Sλ(V ) := V ⊗d · c(Tλ) = {ω · c(Tλ) | ω ∈ V ⊗d},

viewed as a GL(V )-representation.

Remark 11.2. In the definition above we chose a Young tableau T = Tλ. Similarily
to Proposition 8.7, we can see that the representation Sλ(V ) we defined does not
depend on the chosen tableau. Indeed: if T ′ were a different tableau on λ, we would
have c(T ′) = eσ · c(T ) · eσ−1 for some permutation σ ∈ Sd. But then

V ⊗d · c(T ′) = V ⊗d · eσ · c(T ) · eσ−1 = V ⊗d · c(T ) · eσ−1 ,

which is isomorphic to V ⊗d · c(T ) via right multiplication with eσ.

Example 11.3. If λ = (d), then c(Tλ) =
∑
σ∈Sd

eσ, independent of the choice of

Tλ. We see that Sλ(V ) ⊆ V ⊗d is spanned by the vectors of the form∑
σ∈Sd

vσ(1) ⊗ . . .⊗ vσ(d).

Comparing with Remark 2.18, we see that Sλ(V ) = SdV ⊆ V ⊗d is precisely the
d’th symmetric power of V .

Example 11.4. If λ = (1, . . . , 1) (where there are d ones), then c(Tλ) =
∑
σ∈Sd

sgn(σ)eσ,

independent of the choice of Tλ. Now Sλ(V ) ⊆ V ⊗d is spanned by the vectors of
the form ∑

σ∈Sd

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(d).

Again, comparing with Remark 2.18, we see that Sλ(V ) =
∧d

V ⊆ V ⊗d is precisely
the d’th alternating power of V .

Example 11.5. Let λ = (2, 1), and let Tλ be the Young tableau
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T=
1 2

3
,

for Example 8.6. The c(T ) = eid+ e(12)− e(13)− e(132), so Sλ(V ) ⊂ V ⊗3 is spanned
by all vectors of the form

v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2.

It turns out that, if we restrict ourselves to polynomial representations, the
Schur modules form a complete set of nonisomorphic irreps. More precisely, we
have the following:

Theorem 11.6. Write n = dimV .

(1) The Schur module Sλ(V ) is zero if and only if the Young diagram λ has
more than n rows.

(2) Sλ(V ) is an irreducible GL(V )-representation.
(3) If λ and µ are distinct Young diagrams with at most n rows, the repre-

sentations Sλ(V ) and Sµ(V ) are not isomorphic.
(4) Every polynomial irreducible GL(V )-representation is isomorphic to some

Sλ(V ), where λ is a Young diagram with at most n rows. In other words,
we have a one-to-one correspondence{

Polynomial irreps of GL(V )
up to isomorphism.

}
1:1←→ {(λ1, . . . , λn) ∈ Zn | λ1 ≥ . . . ≥ λn ≥ 0} .

In the final section of this course, we will prove part (2). We unfortunately
won’t have time for the other parts. We close this section with a formula for the
character of a Schur module (again without proof):

Theorem 11.7. Let λ = (λ1, . . . , λk) be a partition with k ≤ n parts. If
k < n, we define λk+1 = . . . = λn = 0. The character of Sλ(V ) is the symmetric
polynomial given by

det(


tλ1+n−1
1 tλ2+n−2

1 · · · t
λn−1+1
1 tλn

1

tλ1+n−1
2 tλ2+n−2

2 · · · t
λn−1+1
2 tλn

2
...

...
. . .

...
...

tλ1+n−1
n tλ2+n−2

n · · · t
λn−1+1
n tλn

n

)

det(


tn−11 tn−21 · · · t1 1
tn−12 tn−22 · · · t2 1
...

...
. . .

...
...

tn−1n tn−2n · · · tn 1

)

.

This polynomial is known as the Schur polynomial Sλ(t1, . . . , tn).

One can show that the Schur polynomials Sλ, where λ runs over all Young
diagrams with at most n rows, form a basis for the space of symmetric polynomials
in t1, . . . , tn. Together with the above theorem, this implies that any polynomial
GLn-representation is uniquely determined by its character. Moreover, decompos-
ing a given representation into irreducibles corresponds to writing a given symmetric
polynomial as a linear combination of Schur polynomials.
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11.1. Proof that Schur modules are irreducible. The goal of this section
is to prove the following:

Theorem 11.8. The GL(V )-representation Sλ(V ) is irreducible.

In order to prove this theorem, we define B ⊂ End(V ⊗d) to be the algebra of
endomorphisms of U that commute with the Sd-action:

B = EndSd
(V ⊗d) = {φ : V ⊗d → V ⊗d linear | φ(u·g) = φ(u)·g ∀u ∈ V ⊗d, g ∈ Sd}.

The next lemma shows that, for the purposes of our proof, we can think about
B-modules instead of GL(V )-representations.

Lemma 11.9. A subspace of V ⊗d is a sub-B-module if and only if it is invariant
under GL(V ).

Proof. We have a natural map ρ : GL(V )→ GL(V ⊗d) ⊂ End(V ⊗d) encoding
the GL(V )-action. Since the actions of Sd and GL(V ) commute, the image of ρ is
contained in EndSd

(V ⊗d) = B. This implies that every subspace of V ⊗d invariant
under B is in particular invariant under GL(V ). In order show the converse, it
suffices to show that im ρ linearly spans B.

For this, note that there is a natural isomorphism End(V ⊗d) ∼= End(V )⊗d, and
that B consists of all elements that are invariant under the natural right Sd-action
on End(V )⊗d. Using the notation from Section 2, this means that B = Sd(EndV )
is the d’th symmetric power of the space EndV . But by Proposition 2.23 we know
that this space is linearly spanned by all vectors of the form w ⊗ . . . ⊗ w, where
w ∈ EndV . So we get the following chain of equalities of subspaces of End(V )⊗d:

B = Sd(EndV )

= Span{w ⊗ . . .⊗ w | w ∈ End(V )}
= Span{w ⊗ . . .⊗ w | w ∈ GL(V )}
= Span im ρ,

where the third equality follows since GL(V ) is dense in End(V ). □

In particular, the above lemma implies that to show Theorem 11.8, it is equiv-
alent to show that Sλ(V ) is an irreducible B-module. We will show this in two
steps:

(1) There is an isomorphism

(11.1) Sλ(V ) ∼= V ⊗d ⊗CSd
Vλ

of left B-modules, where Vλ is the irrep of Sd corresponding to λ.
(2) From the irreducibility of Vλ we can conclude irreducibility of Sλ(V ).

Both steps follow from more general statements about group algebras of finite
groups:

Lemma 11.10. Let A be a C-algebra, and c ∈ A an idempotent. Let U be a
finite-dimensional right A-module, and B = EndA(U). Then the canonical map

φ : U ⊗A Ac→U · c
u⊗ ac 7→u · (ac)

is an isomorphism of left B-modules.
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Proof. The map is a morphism of left B-modules by construction. Surjectiv-
ity is easy: a preimage of u · c is given by u ⊗ c. For injectivity, note that every
element of U ⊗AAc is of the form u⊗ c. If u⊗ c ∈ ker(ϕ) this means that u · c = 0.
But then in U ⊗A Ac we have the equality u⊗ c = u⊗ c2 = u · c⊗ c = 0, where we
used that c is an idempotent. □

Applying the above lemma to A = CSd, U = V ⊗d, and c = c(Tλ) yields the
desired isomorphism (11.1).

Lemma 11.11. Let A = CG, where G is any finite group. Let W be an ir-
reducible left G-module, and U be any finite-dimensional right A-module. Write
B = EndG(U). Then U ⊗AW is an irreducible left B-module.

Before we go into the proof of this, we need to say a couple of things about
right CG-modules. Through the entirety of sections Section 3 and Section 4, we
could have worked with right group actions instead of left group actions: this leads
to the notion of a right G-representation. Just as usual (i.e. left) G representations
correspond to left CG-modules, right G-representations correspond to right CG-
modules. What is more, if V is a left G-representation, we can give V ∗ the structure
of a right G-representation2 by ⟨β · g, v⟩ = ⟨β, g · v⟩. One verifies that V is an irrep
if and only V ∗ is an irrep. So if {Vi}i∈I is a complete set of nonisomorphic left
irreps of G, then {V ∗i }i∈I is a complete set of nonisomorphic right irreps of G.

Proposition 11.12. *3 Let V and W be representations of a finite group G. Then
the natural linear map

(11.2) HomG(V,W ) ↪→ HomC(V,W )
∼=−→ V ∗ ⊗C W ↠ V ∗ ⊗CGW

is an isomorphism.

Proof. Consider the linear map

V ∗ ⊗CGW
Φ−→HomG(V,W )(11.3)

β ⊗ w 7→

v 7→ 1

|G|
∑
g∈G
⟨β, g−1 · v⟩g · w

 .(11.4)

This is well-defined, since Φ(β · h ⊗ w) = Φ(β ⊗ h · w) and Φ(β ⊗ w)(h · v) =
h ·Φ(β ⊗w)(v) for all h ∈ G (exercise). We now claim that Φ is the inverse to our
morphism (11.2). To see this, we can choose a basis {e1, . . . , en} of V and write
(11.2) as

HomG(V,W )
Ψ−→V ∗ ⊗CGW

f 7→
∑
i

e∗i ⊗ f(ei).

2This is different from Definition 3.16, where we defined the action slightly differently so it

would be a left action. For the rest of this section, V ∗ will always denote this right representation.
3We need this proposition in the proof of Lemma 11.11; the proof was skipped during the

lecture and only added later to the notes.
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We check that Φ ◦Ψ = id:

Φ(Ψ(f))(v) = Φ(
∑
i

e∗i ⊗ f(ei))(v)

=
1

|G|
∑
i

∑
g∈G
⟨e∗i , g−1 · v⟩g · f(ei)

=
1

|G|
∑
g∈G

g · f(
∑
i

⟨e∗i , g−1 · v⟩ei)

=
1

|G|
∑
g∈G

g · f(g−1 · v)

=
1

|G|
∑
g∈G

f(g · g−1 · v)

= f(v).

We check that Ψ ◦ Φ = id:

Ψ(Φ(β ⊗ w)) =
∑
i

e∗i ⊗

 1

|G|
∑
g∈G
⟨β, g−1 · ei⟩g · w


=

1

|G|
∑
g∈G

((∑
i

⟨β · g−1, ei⟩e∗i

)
· g

)
⊗ w

=
1

|G|
∑
g∈G

(
β · g−1 · g

)
⊗ w

= β ⊗ w.

□

Proof of Lemma 11.11. We can write W = Vj . Let us first consider the
case where U is irreducible as well, so we can write U = V ∗i . By Proposition 11.12,
we have an isomorphism

V ∗i ⊗CG Vj ∼= HomG(Vi, Vj).

But by Schur’s lemma, HomG(Vi, Vj) has dimension at most one, in particular it is
irreducible.

For the general case, we decompose U =
⊕

i∈I (V
∗
i )
⊕ni . Analogously to the

above we have

U ⊗CG Vj ∼=
⊕
i∈I

HomG(Vi, Vj)
⊕ni ∼= HomG(Vj , Vj)

⊕nj ∼= Cnj .

Moreover, using Corollary 3.34, we find that

B = EndG(U) = EndG(
⊕
i∈I

(V ∗i )
⊕ni) ∼=

⊕
i∈I

Mat(ni × ni,C).

By unwinding the definitions a bit more carefully, we see that the action of B on
U⊗CGVj corresponds to the action of Mat(nj×nj ,C) on Cnj by left multiplication.
This clearly has no nontrivial submodules. □
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Proof of Theorem 11.8. Applying Lemma 11.11 to G = Sd, W = Vλ and
U = V ⊗d and using (11.1) we find that Sλ(V ) ∼= V ⊗d ⊗CSd

Vλ is an irreducible
B-module. By Lemma 11.9 it is also an irreducible GL(V )-representation. □

We can go one step further: recall from Proposition 6.6 that we have an iso-
morphism of algebras

CSd
∼=
⊕
λ⊢d

End (Vλ).

In particular this is an isomorphism of (CSd,CSd)-bimodules. But as (CSd,CSd)-
bimodules, we have that End(Vλ) ∼= Vλ ⊗C V

∗
λ , where we view V ∗λ as a right

Sd-representation.
4 Now we can write the following chain of isomorphisms of

(CGL(V ),CSd)-bimodules:

V ⊗d ∼= V ⊗d ⊗CSd
CSd

∼= V ⊗d ⊗CSd

(⊕
λ⊢d

End (Vλ)

)
∼=
⊕
λ⊢d

V ⊗d ⊗CSd
(Vλ ⊗C V

∗
λ )

∼=
⊕
λ⊢d

(
V ⊗d ⊗CSd

Vλ
)
⊗C V

∗
λ

∼=
⊕
λ⊢d

Sλ(V )⊗C V
∗
λ .

This isomorphism

(11.5) V ⊗d ∼=
⊕
λ⊢d

Sλ(V )⊗C V
∗
λ

is known as Schur-Weyl duality. It simultaneously gives the decomposition of V ⊗d

as a (left) GL(V )-representation, and as a right Sd-representation. In particu-
lar, if in (11.5) we forget about the Sd-action, we get an isomorphism of GL(V )-
representations

V ⊗d ∼=
⊕
λ⊢d

(Sλ(V ))
⊕ dimVλ .

This is the natural generalization of the isomorphism V ⊗2 ∼= S2V ⊕
∧2

V from
(2.16).

12. * Closing remarks and further directions

12.1. Rational representations and representations of SL(V ). Once we
understand the polynomial representations of GL(V ), it is only a small step to
describe the rational representations as well. Recall that polynomial irreps are in
bijection with partitions, i.e. tuples (λ1, . . . , λn) ∈ Zn with λ1 ≥ . . . ≥ λn ≥ 0. To
label the rational representations, we just need to drop this “≥ 0”.

Proposition 12.1. Write n = dimV . For λ = (λ1, . . . , λk) a partition with at
most n rows, we write λ = (λ1, . . . , λn), where λi = 0 for k < i ≤ n.

4This is a special case of the following: if A,B are C-algebras, V is a left A-module and W
is a left B-module, then V ∗ is naturally a right A-module, HomC(V,W ) is naturally a (B,A)-

bimodule, and the isomorphism HomC(V,W ) ∼= W ⊗C V ∗ from Example 2.13 is an isomorphism
of (B,A)-bimodules.
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(1) Every irreducible rational representation of GL(V ) is isomorphic to Sλ(V )⊗
Deta for some partition λ with at most n rows and some a ∈ Z.

(2) For λ = (λ1, . . . , λn), the representation Sλ(V ) ⊗ Det is isomorphic to
Sλ′(V ), where λ′ = (λ1 + 1, . . . , λn + 1).

(3) There is a one-to-one correspondence{
Rational irreps of GL(V )
up to isomorphism.

}
1:1←→ {(µ1, . . . , µn) ∈ Zn | µ1 ≥ . . . ≥ µn}

given by mapping Sλ(V )⊗Deta to the tuple (λ1 + a, . . . , λn + a).

Proof sketch. Part (1) follows from Remark 9.5: write the representationW

as a map GL(n,C) → GL(m,C) given by rational functions Pkℓ(aij) =
pkℓ(aij)

det(aij)
bkℓ

where pkℓ is a polynomial and bkℓ ∈ N. Write b = max{bkℓ}, then W ⊗ Detb is a

polynomial irrep, hence W ⊗Detb ∼= Sλ(V ) for some λ, hence W ∼= Sλ(V )⊗Det−b.
Part (2) can be seen by computing the characters of both sides using Theo-

rem 11.7. Part (3) then follows from the first two parts. □

Remark 12.2. Closely related to GL(V ) is the special linear group

SL(V ) = {g ∈ GL(V ) | det(g) = 1}.
For SL(V ), there is no distinction between rational and polynomial representations.
Every rational irrep of GL(V ) restricts to a rational irrep of SL(V ). Moreover,
every rational irrep of SL(V ) arises in this way, and two irreps of GL(V ) restrict
to the same irrep of SL(V ) if and only if they agree up to tensoring with a power
of Det. From this we can get a one-to-one correspondence{

Rational irreps of SL(V )
up to isomorphism.

}
1:1←→
{
(µ1, . . . , µn−1) ∈ Zn−1 | µ1 ≥ . . . ≥ µn−1 ≥ 0

}
.

12.2. Decomposing tensor products. One question that often arises in
practice is the following:

Given two GL(V )-irreps Sλ(V ) and Sµ(V ), what is the decom-
position of the tensor product Sλ(V )⊗ Sµ(V )?

In other words, we want to find the coefficients Nν
λµ in the decomposition

Sλ(V )⊗ Sµ(V ) ∼=
⊕
ν

Sν(V )⊕N
ν
λµ .

By the results from the previous section, this amounts to taking a product of Schur
polynomials and writing it in the Schur basis:

Sλ(t1, . . . , tn) · Sµ(t1, . . . , tn) ∼=
∑
ν

Nν
λµSν(t1, . . . , tn).

The coefficients Nν
λµ are known as the Littlewood-Richardson coefficients; there is

a combinatorial formula for them known as the Littlewood-Richardson rule, see for
instance [FH91, Appendix A].

12.3. Omitted proofs. In Chapters 3 and 4, several proofs have been omit-
ted. Most of these can be found in Lectures 4, 6 and Appendix A of [FH91]. One
important exception is part 4 of Theorem 11.6, which states that the Schur modules
are in fact all polynomial irreps of GL(V ). The approach taken in [FH91] to show
this goes via Lie algebras (see below), and the proof is only completed in Lecture
15. For a proof that is closer to the approach taken in this lecture, see [CB90].
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12.4. Linear algebraic groups. There are two ways to place our study of
GL(n,C) and its representations in a more general context. If you like algebraic
geometry, the natural definition to make is the following.

Definition 12.3. • An affine algebraic variety is a subset of X ⊆ Cn of
the form X = {x ∈ Cn | f1(x) = . . . = fk(x) = 0}, where f1, . . . , fk are
polynomials in n variables.

• A morphism between affine algebraic varieties X ⊆ Cn and Y ⊆ Cm is a
map φ : X → Y that can be described by polynomials: i.e. there exist
p1, . . . pm in n variables such that φ(x) = (p1(x), . . . , pm(x)) ∈ Y ⊆ Cm
for each x ∈ X.

• An affine algebraic group or linear algebraic group (over C) is an affine
algebraic variety G equipped with the structure of a group, such that the
multiplication map µ : G×G→ G and the inversion map ι : G→ G are
morphisms of algebraic varieties.

• A morphism of affine algebraic groups is a map G → H that is both a
morphism of affine varieties and a morphism of groups.

From the above definition, it is clear that SL(n,C) is an affine algebraic variety,
and hence an affine algebraic group: we have

SL(n,C) = {M ∈ Mat(n× n,C) | det(M)− 1 = 0} ⊆ Mat(n× n,C) ∼= Cn
2

To view GL(n,C) as an affine algebraic variety, we need a little trick:

GL(n,C) = {(M,D) | det(M) ·D − 1 = 0} ⊆ Mat(n× n,C)× C ∼= Cn
2+1.

This agrees with the usual definition of GL(n,C): identify an invertible matrix M
with the pair (M, (detM)−1).

Remark 12.4. In fact, it turns out that every affine algebraic group is a closed
subgroup of some GL(n,C). Some other examples of affine algebraic groups include
the additive group (C,+), the orthogonal and special orthogonal groups O(n,C)
and SO(n,C), and the symplectic group Sp(n,C).

Definition 12.5. An algebraic representation of a linear algebraic group G is a
morphism G→ GL(m,C) of linear algebraic groups.

In the case G = GL(n,C) or G = SL(n,C), this agrees with our definition of
rational representation.

12.5. Lie groups and lie algebras. The differential-geometric viewpoint is
to see GL(n,C) not as a linear algebraic group, but as a complex manifold. This
leads to the notion of a Lie group. The remainder of our main reference [FH91]
is devoted to the representation theory of Lie groups and Lie algebras. I will here
attempt to give a very brief idea of what this is about and how it relates to what
we have been doing.

Definition 12.6. A complex Lie group is a complex manifold G equipped with the
structure of a group, such that the multiplication map µ : G × G → G and the
inversion map ι : G → G are morphisms of complex manifolds. A morphism of
complex Lie groups is a map G→ H that is both a morphism of complex manifolds
and a morphism of groups.
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Remark 12.7. If in the above we replace “complex manifold” with “smooth man-
ifold”, we obtain the definition of a real Lie group.

It turns out that an affine algebraic variety is always smooth5, and therefore
a complex Lie group. In particular, SL(n,C), GL(n,C), and the examples from
Remark 12.4 are complex Lie groups.

Definition 12.8. A Lie group representation of a complex Lie group G is a mor-
phism G→ GL(n,C) of complex Lie groups.

Remark 12.9. Every morphism of linear algebraic groups is a morphism of Lie
groups, but not the other way around. In particular, for G a linear algebraic group,
there can be Lie group representations of G that are not algebraic. For instance,
take G = (C,+) and the map G → GL(1,C) : z → ez. However, as we will see
below, for G = GL(n,C) every Lie group representation is in fact algebraic.

Given a Lie group G, one can take the tangent space TeG at the identity
element, which is just a vector space. It turns out that the group operation on G
endows TeG with an operation [·, ·] : TeG×TeG→ TeG called the Lie bracket. This
gives TeG the structure of a so-called Lie algebra, which is typically denoted Lie(G)
or simply g.

Definition 12.10. A Lie algebra is a vector space g together with a bilinear oper-
ation [·, ·] : g× g→ g such that

• [X,X] = 0 for all X ∈ g,
• [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 for all X,Y, Z ∈ g.

It would take me a bit too much time to explain the geometric construction
of the Lie bracket on Lie(G) from the group structure of G. However, I can tell
you what the Lie bracket is for every Lie algebra you will ever encounter: For
G = GL(n,C), we have TeG = Mat(n×n,C) =: gln. The Lie bracket in this case is
the commutator: [X,Y ] = XY − Y X. More generally, if G is a closed subgroup of
GL(n,C) (for instance SL(n,C), SO(n,C), . . . ), then there is a natural inclusion
TeG ⊂ Mat(n× n,C), and the Lie bracket is still given by the commutator.

Definition 12.11. A Lie algebra representation is a morphism g → gln of Lie
algebras; i.e. a linear map g→ Mat(n× n,C) such that

φ([X,Y ]) = φ(X) · φ(Y )− φ(Y ) · φ(X).

Theorem 12.12. If G is a simply connected Lie group, then there is a one-to-
one correspondence between Lie group representations of G and Lie algebra repre-
sentations of Lie(G).

If we want to apply this to our favorite group G = GL(n,C), we run into
the problem that GL(n,C) is not simply connected. However, SL(n,C) is simply
connected. After spending some time analyzing the Lie algebra sln, one can show

Theorem 12.13. Every representation of sln is isomorphic to Sλ(Cn), for λ a
partition with at most n− 1 parts.

Then Theorem 12.12 implies that every Lie group representation of SL(n,C) is
isomorphic to Sλ(Cn), foe λ a partition with at most n−1 parts. This then implies
the corresponding result for GL(n,C) with relatively little extra effort.

5This follows from the fact that G acts transitively on itself by left multiplication. So if G
had a singularity then every point would be singular, which cannot happen.
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