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Uniform matrix product states

The uniform matrix product state parametrization is given by the map
φ : (Cm×m)n → (Cn)⊗d

(A1, . . . ,An) ↦→
∑︁

1≤i1,...,id≤n
Tr(Ai1 · · ·Aid) ei1 ⊗ · · · ⊗ eid.(1)

n

m m
↦→

· · ·

n n n n

m m m m

d sites
m

The variety MPS(m, n, d) is the closure of the image of this map.

MPS(m, n, d) = φ((Cm×m)n)

Motivation
• They model quantum-mechanical systems of d
sites placed on a ring.
• Form = 1, we recover the Veronese embedding.
Hence MPS(m, n, d) is a “noncommutative
Veronese variety".

Observations
• The variety MPS(m, n, d) is contained in the
space Cycd(Cn) of cyclically symmetric tensors.
• For the casem = n = 2, we even have

MPS(2, 2, d) ⊆ Dihd(C2),

where Dihmeans dihedrally symmetric.
• The variety MPS(m, n, d) is invariant under
the natural action of GLn on (Cn)⊗d.

Goal
•Determine the linear span of MPS(m, n, d);
i.e. the smallest vector subspace of (Cn)d

containing MPS(m, n, d).
• Equivalently: given n genericm× mmatrices
A1, . . . ,An, what linear relations hold between
the d-fold traces Tr(Ai1 · · ·Aid).

Representation theory

• The linear span 〈MPS(m, n, d)〉 is naturally a
representation of GLn.
• To determine its decomposition into
irreducibles, it suffices to find the dimension of
the weight spaces.
•Weight spaces are obtained by fixing (i1, . . . , id)
up to permutation in (1).

Finding linear relations

Example: For any 2× 2 matrices A0,A1,A2,A3 and any k ≥ 0, the following identity holds:

Tr(A1A2A0A3Ak
0) + Tr(A2A3A0A1Ak

0) + Tr(A3A1A0A2Ak
0) =Tr(A1A0A2A3Ak

0) + Tr(A2A0A3A1Ak
0) + Tr(A3A0A1A2Ak

0).

Proof. We first show the identity for k = 0, 1:

Tr(A1A2A0A3) + Tr(A2A3A0A1) + Tr(A3A1A0A2) =Tr(A1A0A2A3) + Tr(A2A0A3A1) + Tr(A3A0A1A2)
Tr(A1A2A0A3A0) + Tr(A2A3A0A1A0) + Tr(A3A1A0A2A0) =Tr(A1A0A2A3A0) + Tr(A2A0A3A1A0) + Tr(A3A0A1A2A0).

For k > 1, we can write Ak
0 as a linear combination of Aj

0 for j < k; so we can proceed by induction.
The above linear relation can be generalized tom× mmatrices:∑︁

σ∈Sm+1

sgn(σ)Tr(A0Bσ(0)A1Bσ(1) · · ·Am−1Bσ(m−1)AmBσ(ℓ)) = 0.

By an appropriate substitution, we find:

Theorem
If n ≥ 3 and d ≥ (m+1)(m+2)2 , then MPS(m, n, d) is contained in a proper linear subspace of the space of
cyclically invariant tensors.

Invariant theory of matrices

• Let A1, . . . ,An bem× mmatrices with generic
entries. The ring generated by all polynomials
Tr(Ai1 · · ·Aid) is the trace algebra Cm,n.
• Fact: Cm,n consists of all polynomials in the
entries of the Ai that are invariant under
simultaneous conjugation.
• Fact: C2,2 is generated by
Tr(A1),Tr(A2),Tr(A2

1 ),Tr(A1A2),Tr(A2
2).

• Corollary: get an upper bound

dim〈MPS(2, 2, d)〉 ≤
1

192
d4 + l.o.t.

Outlook
• Based on computer experiments, we conjecture
an exact formula:

dim〈MPS(2, 2, d)〉 =

⎧⎨⎩ 1
192(d

4 − 4d2 + 192d+ 192) for d even,
1
192(d

4 − 10d2 + 192d+ 201) for d odd.

• Can we further exploit invariant theory of
matrices?
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