

u^b

b UNIVERSITÄT BERN

The linear span of uniform matrix product states

Claudia De Lazzari, Harshit J. Motwani, Tim Seynnaeve

Uniform matrix product states

The uniform matrix product state parametrization is given by the map

$$\varphi: (\mathbb{C}^{m \times m})^n \to (\mathbb{C}^n)^{\otimes d}$$

$$(A_1, \dots, A_n) \mapsto \sum_{1 \leq i_1, \dots, i_d \leq n} \operatorname{Tr}(A_{i_1} \cdots A_{i_d}) e_{i_1} \otimes \cdots \otimes e_{i_d}.$$

$$n \qquad m \qquad m \qquad m \qquad m$$

$$d \text{ sites}$$

$$m \qquad m$$

The variety uMPS(m, n, d) is the closure of the image of this map.

$$\mathsf{uMPS}(m,n,d) = \overline{\varphi((\mathbb{C}^{m\times m})^n)}$$

Motivation

- They model quantum-mechanical systems of *d* sites placed on a ring.
- For m = 1, we recover the Veronese embedding. Hence uMPS(m, n, d) is a "noncommutative Veronese variety".

Observations

- The variety uMPS(m, n, d) is contained in the space $\text{Cyc}^d(\mathbb{C}^n)$ of cyclically symmetric tensors.
- For the case m = n = 2, we even have

$$uMPS(2, 2, d) \subseteq Dih^d(\mathbb{C}^2),$$

where Dih means dihedrally symmetric.

• The variety uMPS(m, n, d) is invariant under the natural action of GL_n on $(\mathbb{C}^n)^{\otimes d}$.

Goal

- Determine the linear span of uMPS(m, n, d); i.e. the smallest vector subspace of $(\mathbb{C}^n)^d$ containing uMPS(m, n, d).
- Equivalently: given n generic $m \times m$ matrices A_1, \ldots, A_n , what linear relations hold between the d-fold traces $Tr(A_{i_1} \cdots A_{i_d})$.

Representation theory

- The linear span $\langle uMPS(m, n, d) \rangle$ is naturally a representation of GL_n .
- To determine its decomposition into irreducibles, it suffices to find the dimension of the weight spaces.
- Weight spaces are obtained by fixing (i_1, \ldots, i_d) up to permutation in (1).

Finding linear relations

Example: For any 2×2 matrices A_0 , A_1 , A_2 , A_3 and any $k \ge 0$, the following identity holds:

$$Tr(A_1A_2A_0A_3A_0^k) + Tr(A_2A_3A_0A_1A_0^k) + Tr(A_3A_1A_0A_2A_0^k) = Tr(A_1A_0A_2A_3A_0^k) + Tr(A_2A_0A_3A_1A_0^k) + Tr(A_3A_0A_1A_2A_0^k).$$

Proof. We first show the identity for k = 0, 1:

$$\frac{\text{Tr}(A_1A_2A_0A_3) + \text{Tr}(A_2A_3A_0A_1) + \text{Tr}(A_3A_1A_0A_2) = \text{Tr}(A_1A_0A_2A_3) + \text{Tr}(A_2A_0A_3A_1) + \text{Tr}(A_3A_0A_1A_2)}{\text{Tr}(A_1A_2A_0A_3A_0) + \text{Tr}(A_2A_3A_0A_1A_0) + \text{Tr}(A_3A_1A_0A_2A_0) = \text{Tr}(A_1A_0A_2A_3A_0) + \text{Tr}(A_2A_0A_3A_0) + \text{Tr}(A_3A_0A_1A_0) + \text{Tr}(A_3A_0A_1A_0A_2A_0).$$

For k > 1, we can write A_0^k as a linear combination of A_0^j for j < k; so we can proceed by induction. The above linear relation can be generalized to $m \times m$ matrices:

$$\sum_{\sigma \in \mathfrak{S}_{m+1}} \operatorname{sgn}(\sigma) \operatorname{Tr}(A_0 B^{\sigma(0)} A_1 B^{\sigma(1)} \cdots A_{m-1} B^{\sigma(m-1)} A_m B^{\sigma(\ell)}) = 0.$$

By an appropriate substitution, we find:

Theorem

If $n \ge 3$ and $d \ge \frac{(m+1)(m+2)}{2}$, then uMPS(m, n, d) is contained in a proper linear subspace of the space of cyclically invariant tensors.

Invariant theory of matrices

- Let A_1, \ldots, A_n be $m \times m$ matrices with generic entries. The ring generated by all polynomials $Tr(A_{i_1} \cdots A_{i_d})$ is the *trace algebra* $\mathscr{C}_{m,n}$.
- Fact: $\mathcal{C}_{m,n}$ consists of all polynomials in the entries of the A_i that are invariant under simultaneous conjugation.
- Fact: $\mathscr{C}_{2,2}$ is generated by $\operatorname{Tr}(A_1)$, $\operatorname{Tr}(A_2)$, $\operatorname{Tr}(A_1^2)$, $\operatorname{Tr}(A_1^2)$, $\operatorname{Tr}(A_2^2)$.
- Corollary: get an upper bound

$$\dim \langle uMPS(2, 2, d) \rangle \leq \frac{1}{192} d^4 + l.o.t.$$

Outlook

 Based on computer experiments, we conjecture an exact formula:

$$\dim \langle \text{uMPS}(2, 2, d) \rangle = \begin{cases} \frac{1}{192} (d^4 - 4d^2 + 192d + 192) & \text{for } d \text{ even,} \\ \frac{1}{192} (d^4 - 10d^2 + 192d + 201) & \text{for } d \text{ odd.} \end{cases}$$

 Can we further exploit invariant theory of matrices?

References

- [1] Adam Czapliński, Mateusz Michałek, and Tim Seynnaeve
 Uniform matrix product states from an algebraic geometer's point
 of view
 To appear in Advances in Applied Mathematics
- To appear in: Advances in Applied Mathematics arXiv:1904.07563
- [2] Claudia De Lazzari, Harshit J. Motwani, and Tim Seynnaeve The linear span of uniform matrix product states arXiv:2204.10363

Contact Information

Harshit J Motwani

- Web: https://sites.google.com/view/harshitjmotwani/home
- Email: HarshitJitendra.Motwani@ugent.be

Tim Seynnaeve

- Web: https://mathsites.unibe.ch/seynnaeve/
- Email: tim.seynnaeve@math.unibe.ch